CFD

zCFDguide Documentation
Release v2019.06.86

Zenotech Ltd

Jun 13, 2019

CONTENTS

1 Version: v2019.06.86 1
1.1 OVEIVIEW . o e e i e e s e 1
1.2 Formulation e e e e e e e e e e e e e e e 1
0 T I (o7) o £ 2
R 5 (o3 U 1 (0) o 2
1.5 MYCIUSTET . . v v e 3
1.6 ControlDictionary it i e e e e 5
1.7 Mesh Conversion i it ittt e 24
1.8 Visualisation e e e e e e e e e e e 25
1.9 Utilities v ottt e e e e e e e e e e e e e e e e 27

CHAPTER

ONE

VERSION: V2019.06.86

zCFD is a computational fluid dynamics (CFD) solver designed to make highly effective use of modern com-
puter architectures. The code will run on unstructured meshes from a variety of sources, and will export data
in many common formats.

zCFD is a density-based finite volume solver, allowing steady-state or time-dependent, turbulent flow simu-
lation. The numerical scheme has been selected for accuracy and robustness. The code provides automatic
scaling of turbulent wall functions; automatic determination of inflow / outflow conditions and automatic
pre-conditioning to allow for low and high Mach number flow.

zCFD makes use of the MPI protocol to manage execution over a set of compute nodes. The execution process
is completely parallel from the start to finish including all the Input/Output (I0) functionality. To support
this scalable implementation the mesh input is provided in hdf5 format which is portable and self describing.
Filters are provided to convert the most frequently used formats to this internal format.

zCFD uses a single control dictionary to specify all the parameters. This is a python file containing a python
dictionary with certain mandatory keys. The use of python for the control dictionary enables the user to add
custom functions that populate the dictionary at runtime.

zCFD is a hybrid of an open-source (freely available without restriction) front-end (“ZCFD Driver”) and pro-
prietary (closed-source) back-end (“ZCFD Core”). Anyone can develop “ZCFD Driver” for their own purposes
including commercial exploitation.

zCFD is a many-core accelerated Computational Fluid Dynamics solver that solves the Steady or Unsteady
Reynolds Averaged Navier Stokes (RANS) equations using the finite volume technique. This is based on a cell
centred approach on arbitrary polyhedral meshes with the boundary conditions applied in a strong formula-
tion. The scheme implemented is formally second order accurate in time and third order accurate in space.

The spatial accuracy is achieved by using a slope limited MUSCL reconstruction at cell interfaces. The HLLC
scheme is then used with the reconstructed values to calculate the interface flux.

The primary solver is based on a multi-stage explicit solver using local time stepping and geometric multigrid
to accelerate convergence.

Turbulence modelling is provided by an implementation of Menter SST two equation model which is can be
used in low Reynolds number mode (i.e. integration to the wall) or high Reynolds number mode (i.e. wall
functions).

zCFDguide Documentation, Release v2019.06.86

zCFD requires a license. If you do not already have a license, please contact to
obtain one. The license file provided can be placed in the same directory alongside the input files or else its
location can be defined using the environment variables below

export RLM_LICENSE=port@server

or

export RLM_LICENSE=/path/to/license/file

In the case that the system running the simulation cannot access the internet a local license server will be
required. See for details.

zCFD is run from the command line using a customised environment that automatically sets up all of the
paths and file locations correctly. To make the execution of parallel jobs easier, we also provide the free tool
that simplifies the interaction with a range of job schedulers.

To run zCFD, the zCFD command line environment must be active. The zCFD command line environment is
initialised from a terminal window by sourcing the activate script in the zCFD installation directory. It does
not matter where this directory is - all of the executable paths and file locations will be set automatically:

> source /INSTALL_LOCATION/zCFD-version/bin/activate
This sets up the environment to enable execution of the specific version. When this environment is active, you
should see a prefix to your command prompt, such as:

(zCFD) >

To deactivate the command line environment, returning the environment to the previous state use

(zCFD) > zdeactivate

Your command prompt should return to its normal appearance.

zCFD makes very effective use of a range of processor types and computer configurations. We provide a smart-
launch.bsh script with zCFD to automatically detect the processor type and the presence of any accelerators
(like Nvidia GPUs or Intel Xeon Phi’s).

Smartlaunch uses this information to calculate the number of OpenMP threads to set per MPI task and to
perform NUMA binding to specific cores and memory banks.

The optimum number of execution tasks ($NTASKS below) should match the total number of sockets (usually
two per node) not the number of cores. This configuration will also work for systems with accelerators present.

It is also recommended to always use any computational nodes in exclusive mode to achieve the best perfor-
mance.

2 Chapter 1. Version: v2019.06.86

mailto:zcfd@zenotech.com
http://www.reprisesoftware.com/admin/software-licensing.php

zCFDguide Documentation, Release v2019.06.86

PROBLEM_NAME is the name of the hdfb5 file containing the mesh
CASE_NAME is the name of the python control

run_zcfd --ntask 10 -p $PROBLEM_NAME -c $CASE_NAME

Alternatively, is a powerful tool for setting up, running and monitoring zCFD jobs on a range of
schedulers. We recommend this tool, and it is provided as part of the zCFD environment.

PROBLEM_NAME <s the name of the hdfb5 file containing the mesh
CASE_NAME is the name of the python control

cluster_run -p $PROBLEM_NAME -c $CASE_NAME -j mycluster_job.job

zCFD provides an input validation script which can be used to check the solver control dictionary before run-
time reducing the likelihood of a job spending a long time queuing only to fail at start up. The script can be
executed from the zCFD environment as follows:

validate_input input.py [-m mesh.h5]

Validating parameters dictionmary...

Parameters dictionary is valid

Checking BC_, FR_, FZ_, IC_ and TR_ numbering...
IC_ numbering is correct

FR_ numbering is correct

BC_ numbering is correct

zCFD input file input.py is valid

If the -m option is given with a mesh file the script will check whether any zones specified as lists to boundary
conditions, transforms or reports in the input exist in the mesh.

MyCluster from Zenotech is used to set up, run, monitor and manage parallel jobs on a range of high perfor-
mance computing environments without the user having to know the details of the queueing systems and job
scheduler commands.

MyCluster is distributed as part of zCFD, and is automatically available from within the zCFD command line
environment. Alternatively, MyCluster can be and installed separately.

To use MyCluster within the zCFD command line environment, you first need to configure it with your user
details. This is so that MyCluster can keep track of your jobs, and email you with alerts. This step only needs
to be done once per user.

First enter your details:

(zCFD) : mycluster --firstname <Your First Name>
(zCFD) : mycluster --lastname <Your Last Name>
(zCFD) : mycluster --email <Your Email Address>

MyCluster generates and uses job files for zCFD (and other software packages) for each different computer
system. To set up a job file for zCFD, enter (for example):

(zCFD) : mycluster --create=my-job.job \
--jobname=my-job \
--project=my-project \
--jobqueue=my-job-queue \

(continues on next page)

1.5. MyCluster 3

https://github.com/zenotech/MyCluster

zCFDguide Documentation, Release v2019.06.86

(continued from previous page)

--ntasks=12 \

--taskpernode=2 \
--script=mycluster-zcfd.bsh \
--maxtime=12

This will create a job file called my-job.job.

The my-job.job file can be called whatever you like, but avoid the use of spaces and other special characters
in the title. The project is a billing code used on the system. If you do not know what this code should be, ask
your system administrator.

The jobqueue is the name of the local on the system (for example slurm, moab or pbs). To find
out which local job scheduler is running on your system, type:

(zCFD) : mycluster -q

This will also provide a list of job queues, and show how much resource is currently available on each.

The ntasks setting is the total number of processors (sockets) that you want to use. For zCFD this will be equal
to the number of mesh partitions that are generated. The number of tasks per node should match the number
of compute devices per node (CPU sockets, Xeon Phi devices or Nvidia GPU devices). Usually there are two
sockets per node, so set taskpernode equal to 2. Your system administrator should advise if the local setup is
different to this.

The script is software specific. The mycluster-zcfd.bsh script is included (along with scripts for a number of
other CFD codes) in the MyCluster distribution in the share/ directory, so you do not need to alter the script
setting if you are running zCFD.

The maxtime setting is used to prevent failed jobs from over-running and to allow schedulers to prioritise short
jobs where they can be accommodated between larger jobs. The default setting is 12 hours (maxtime=12) but
you can specify any amount of time in hours (up to the local queue maximum) can be used. The actual limit
will be shown in the jobfile, and it is worth checking whether this is adequate.

Once created, the job file can be re-used for similar simulation tasks on the same computer. If any of the
parameters change (size of job, project, etc.) then you will need to create a new job file.

To run zCFD using MyCluster, make sure that the job file is in the directory containing the mesh and input
files, change to that directory and enter (for example):

Example usage:

(zCFD) : (export PROBLEM=my-mesh.h5;\
export CASE=my-case;\
mycluster --submit=my-job.job)

where my-mesh.h5 is the name of the HDF5 mesh file and my-case.py is the name of the python input param-
eters file. This command will submit the job to the queue.

To track the progress of your jobs via MyCluster, enter:

(zCFD) : mycluster -p

To delete a job from the queue, check the Job ID using mycluster -p and then enter:

(zCFD) : mycluster -d <Job ID>

A full list of MyCluster commands can be obtained:

(zCFD) : mycluster --help

4 Chapter 1. Version: v2019.06.86

http://en.wikipedia.org/wiki/Job_scheduler

zCFDguide Documentation, Release v2019.06.86

1.6 Control Dictionary

The zCFD control file is a python file that is executed at runtime. This provides a flexible way of specifying key
parameters, enabling user defined functions and leveraging the rich array of python libraries available.

A python dictionary called ‘parameters’ provides the main interface to controlling zCFD

parameters = {....}

zCFD will validate the parameters dictionary specified at run time against a set of expected values for each key.
In general, values that should be integers and floats will be coerced to the correct type. Values which should
be strings, booleans, lists or dictionaries will cause an error if they are the incorrect type. The time marching
scheme and solver/equation set chosen defines which dictionary keys are valid. A simple script is provided to
allow the user to check the validity of their input parameters before submitting their job. See /nput Validation.

1.6.1 Reference Settings

Define units

Optional (default 'SI'):
units for dimensional quantities
'units' : 'SI',

Scale mesh

Optional (default [1.0,1.0,1.0]):
Scale wvector
'scale' : [1.0,1.0,1.0],

Optional
Scale function
'scale' : scale_func,

Example scale function

Scale function

def scale_func(point):
Scale y coordinate by 100
point[2] = point[2] * 100.0
return {'coord' : point}

Reference state

reference state
'reference' : 'IC_1",

See Initial Conditions

Partitioner

The ‘metis’ partitioner is used to split the computational mesh up so that the job can be run in parallel. Other
partitioners will be added in future code releases

1.6. Control Dictionary 5

zCFDguide Documentation, Release v2019.06.86

Optional (default 'metis'):
partitioner type
'partitioner' : 'metis',

Safe Mode

Safe mode turns on extra checks and provides diagnosis in the case of solver stability issues

Optional (default False):
Safe mode
'safe' : False,

1.6.2 Initialisation

Initial conditions are used to set the flow variable values in all cells at the start of a simulation. The initial
conditions default to the reference state (above) if not specified

Initial conditions
'initial' : 'IC_2',

See Initial Conditions. A function which defines the initial fields may be supplied

Initial conditions

'initial' : {
Name of initial condition
'name' : 'IC_1',
Optional: User defined function
'"func' : my_initialisation,

}1

Example User Defined Initialisation Function

def my_initialisation(**kwargs):

Dimensional primitive variables
pressure = kwargs['pressure']
temperature = kwargs['temperature']
velocity = kwargs['velocity']
wall_distance = kwargs['wall_distance']
location = kwargs['location']

if location[0] > 10.0:
velocity[0] *= 2.0

Return a dictionary with user defined quantity.
Same schema as above
return { 'velocity' : velocity }

To restart from a previous solution

Restart from previous solution

'restart' : True,
Optional: Restart from and different case
'restart casename' : 'my_case',

It is possible to restart the SA-neg solver from results generated using the Menter SST solver and vice versa,
however by default the turbulence field(s) are reset to zero. An approximate initial solution for the SA-neg
model can be generated from Menter-SST results by adding the key

6 Chapter 1. Version: v2019.06.86

zCFDguide Documentation, Release v2019.06.86

Generate approzimate initial field for SA-neg
'approximate sa from sst results' : True,

1.6.3 Low Mach number preconditioner settings (Optional)

The preconditioner is a mathematical technique for improving the speed of the solver when the fluid flow is
slow compared to the speed of sound. Use of the preconditioner does not alter the final converged solution
produced by the solver. The preconditioner factor is used to improve the robustness of the solver in regions of
very low speed. The preconditioner is controlled in the 'equations' dictionary (see Equations) by setting the
'precondition' key, for example when using the euler solver

‘euler' : {
Optional (default False):
Use low speed mach preconditioner
'precondition' : True,

},

Optional, Advanced: Preconditoner factor
'preconditioner' : {
'minimum mach number' : 0.5,

}’

1.6.4 Time Marcher

zCFD is capable of performing both steady-state and time accurate simulations. In the first case the solution
is marched in pseudo time using the dual time-stepping algorithm towards the steady-state solution. For time
accurate simulations the solution can be either globally time-stepped or use dual time-stepping. The 'time
marching' dictionary controls the selection of these schemes.

'time marching' : {....},

Time accurate (unsteady) simulation control

'time marching' : {
'unsteady' : {
Total time in seconds
'total time' : 1.0,
Time step in seconds
'time step' : 1.0,
Required only when dual time-stepping:
Dual time step time accuracy (options: 'first' or 'second'y
—order)
'order' : 'second',
Required only when dual time-stepping:
Number of pseudo time (steady) cycles to run before,
—starting dual timestep time accurate simulation
'start' : 3000,
1,
1,

Solver scheme

There are three different time marching schemes available in zCFD: Euler, various orders of Runge Kutta (like
Euler...) and the implicit LU-SGS scheme. These can be run with dual time-stepping for both steady and
unsteady simulations or with global time-stepping for unsteady simulations. The choice of scheme and time
stepping algorithm affects with dictionary keys are valid.

1.6. Control Dictionary 7

zCFDguide Documentation, Release v2019.06.86

Runge Kutta

'time marching' : {
'scheme' : {
Either 'euler' or 'runge kutta' or 'lu-sgs'
'name' : 'runge kutta',
Number of RK stages 'euler' or 1, 4, 5, 'rk third order tvd'
'stage': 5,

Time-stepping scheme: 'local timestepping' for steady state ory
—dual time step time accurate

'global timestepping' for time accurate

'kind' : 'local timestepping'

1,

LU-SGS

'time marching' : {

'scheme' : {
'name' : 'lu-sgs',
1,

"lu-sgs' : {
Optional (default 8)
'Number 0f SGS Cycles' : 8,
Optional (default 1)
'Jacobian Update Frequency' : 1,
Optional (default True)
'Include Backward Sweep' : True,
Optional (default True)
'Include Relaxation' : True,
Optional (default 1.0e-8)
'Jacobian Epsilon' : 1.0e-08,
Optional (default True)
'Use Rusanov Flux For Jacobian' : True,
Optional (default False)
'Finite Difference Jacobian' : True,

},

When global time-stepping is specified the keys ['unsteady'] ['order'] and ['unsteady'] ['start'] are
not valid. The CFL keys in in the CFL section below are also not valid as the time step is explicitly specified.
When the ['unsteady']['total time'] and ['unsteady']['time step'] keys are set to be equal val-
ues and ['time marching']['scheme'] ['kind'] issetto 'local timestepping' the solver marches in
pseudo time towards a steady state solution. If LU-SGS is selected then the '1lu-sgs' sub-dictionary must be
provided.

CFL

The Courant-Friedrichs-Lewy (CFL) number controls the local pseudo time-step that the solver uses to reach
a converged solution. The larger the CFL number, the faster the solver will run but the less stable it will be. The
default values should be appropriate for most cases, but for lower-quality meshes or very complex geometries
it may be necessary to use lower values (e.g. CFL of 1.0). In such cases it may also be helpful to turn off Multigrid
(above) by setting the maximum number of meshes to 0. The CFL dictionary keys are only valid when using
dual time-stepping.

'time marching' : {
Default maxz CFL number for all equations
'cfl': 2.5

(continues on next page)

8 Chapter 1. Version: v2019.06.86

zCFDguide Documentation, Release v2019.06.86

(continued from previous page)

Optional (default 'cfl' walue):
Override maz CFL number for transported quantities
'cfl transport' : 1.5,
Optional (default 'cfl' walue):
Override maz CFL number for coarse meshes
'cfl coarse' : 2.0,
Control of CFL for polynomial multigrid (from highest to lowest order)
'multipolycfl' : [2.0,2.0,2.0],
Optional: Ramp cfl
'cfl ramp factor': {
cfl = cfl_ini * growth ~ cycle
'growth': 1.05,
min cfl
'initial': 0.1,

}’

Cycles

For steady-state simulations, the number of pseudo time cycles is the same as the number of steps that the
solver should use to reach a converged solution. Note that the solver uses local pseudo time-stepping (the
time-step varies according to local conditions) so any intermediate solution is not necessarily time-accurate.

For unsteady (time-accurate) simulations using ‘dual time-stepping’ to advance the solution in time the num-
ber of pseudo time cycles determines the number of inner iterations that the solver uses to converge each real
time step. When global time-stepping is specified the cycles key is not valid.

'time marching' : {
Required only for daul time-stepping:
Number of pseudo time cyles
'cycles' : 5000,

Multigrid

The mesh is automatically coarsened by merging cells on successive layers in order to accelerate solver conver-
gence. This does not alter the accuracy of the solution on the finest (original) mesh. Advanced users can con-
trol the number of geometric multigrid levels and the ‘prolongation’ of quantities from coarse to fine meshes.

'time marching' : {
Mazimum number of meshes (including fine mesh)
'multigrid' : 10,
Optional:
Number of multigrid cycles before solving on fine mesh only
'multigrid cycles' : 5000,
Optional (default 0.75), Advanced:
Prologation factor
'prolong factor' : 0.75,
Optional (default 0.3), Advanced:
Prolongation factor for transported quantities
'prolong transport factor' : 0.3,

},

Polynomial Multigrid

The polynomial basis on which the solution is computed can be successively coarsened, thus allowing the
solution to be evolved quicker due to weakened stability restrictions at lower polynomial orders. This does not

1.6. Control Dictionary 9

zCFDguide Documentation, Release v2019.06.86

alter the accuracy of the solution on the highest polynomial order.

'time marching' : {
Optional (default False):
Switch on polynomial multigrid
'multipoly' : True,
1,

1.6.5 Equations

The equations key selects the equation set to be solved as well as the finite volume solver or the high order
strong form Discontinuous Galerkin/Flux Reconstruction solver. For each equation type the valid keys are
listed below.

Governing equations to be used
one of: RANS, euler, viscous, LES, DGRANS, DGeuler, DGuiscous, DGLES
'equations' : 'RANS',

Compressible Euler flow is inviscid (no viscosity and hence no turbulence). The compressible Euler equations
are appropriate when modelling flows where momentum significantly dominates viscosity - for example at
very high speed. The computational mesh used for Euler flow does not need to resolve the flow detail in the
boundary layer and hence will generally have far fewer cells than the corresponding viscous mesh would have.

'euler' : {
Spatial accuracy (options: first, second)
'order' : 'second',
Optional (default 'vanalbada'):
MUSCL limiter (options: wvanalbada)
'limiter' : 'vanalbada',
Optional (default False):
Use low speed mach preconditioner
'precondition' : True,
Optional (default False):
Use linear gradients
'linear gradients' : False,
Optional (default 'HLLC'):
Scheme for inviscid fluz: HLLC or Rusanov
'Inviscid Flux Scheme': 'HLLC',
1,

The viscous (laminar) equations model flow that is viscous but not turbulent. The Reynolds number of a flow
regime determines whether or not the flow will be turbulent. The computational mesh for a viscous flow does
have to resolve the boundary layer, but the solver will run faster as fewer equations are being included.

'viscous' : {
Spatial accuracy (options: first, second)
'order' : 'second',
Optional (default 'vanalbada'):
MUSCL limiter (options: wvanalbada)
'limiter' : 'vanalbada',
Optional (default False):
Use low speed mach preconditioner
'precondition' : True,
Optional (default False):
Use linear gradients
'linear gradients' : False,
Optional (default 'HLLC'):
Scheme for invisctd flux: HLLC or Rusanov
'Inviscid Flux Scheme': 'HLLC',

10 Chapter 1. Version: v2019.06.86

http://en.wikipedia.org/wiki/Reynolds_number

zCFDguide Documentation, Release v2019.06.86

The fully turbulent (Reynolds Averaged Navier-Stokes Equations)

'RANS' : {
Spatial accuracy (options: first, second)
'order' : 'second',
Optional (default 'vanalbada'):
MUSCL limiter (options: wvanalbada)
'limiter' : 'vanalbada',
Optional (default False):
Use low speed mach preconditioner
'precondition' : True,
Optional (default False):
Use linear gradients
'linear gradients' : False,
Optional (default 'HLLC'):
Scheme for inviscid fluz: HLLC or Rusanov
'Inviscid Flux Scheme': 'HLLC',
Turbulence
'turbulence' : {
turbulence model (options: 'sst', 'sa-neg')
'model' : 'sst',
Optional (default 'mome'):

LES model (options 'mome', 'DES', 'DDES', 'SAS')

'les' : 'none',

Optional (default 0.09):

betastar turbulence closure constant
'betastar' : 0.09,

Optional (default True):

turn off mu_t limiter

'limit mut' : False,

Optional (default CDES=0.65, CDES_kw=0.78, CDES_keps=0.61):

DES constants

'CDES': 0.65

'CDES_kw': 0.78,

'CDES_keps': 0.61,

Optional when using 'sst' (default 0):

Menter SST production term: 0=SST-V, 1=incompressible, 2=SST

'production': O,
Optional when using 'sa-neg' (default False):
Use sa-neg rotation correction
'rotation correction': True,
}’
1,

The filtered Large Eddy Simulation (LES) equations

'LES' : {
Spatial accuracy (options: first, second)
'order' : 'second',
Optional (default 'vanalbada'):
MUSCL limiter (options: vanalbada)
'limiter' : 'vanalbada',
Optional (default False):
Use low speed mach preconditioner
'precondition' : True,
Optional (default False):
Use linear gradients

'linear gradients' : False,
'turbulence' : {
LES model (options 'mone’, 'WALE')
'les' : 'none',
1,

(continues on next page)

1.6. Control Dictionary

11

zCFDguide Documentation, Release v2019.06.86

(continued from previous page)

}7

When using the high order strong form Discontinuous Galerkin/Flux Reconstruction solver the keys in the
equations dictionary are the same for each equation set except that the 'linear gradients'and 'limiter’
keys are not valid and additional keys are available in the equations dictionary. These additional keys are given
below

'DG..." : {

Spatial polynomial order 0,1,2,3

'order' : 2,

Optional (default False)

'Approximate curved boundaries': True,

Optional (default 0.0)

'cll stability parameter': 0.0,

Optional (default 0.0)

cl11 stability parameter for transported wvariables

'cll stability parameter transport': 0.0,

Optional (default 0.5)

'LDG upwind parameter': 0.5,

'LDG upwind parameter aux': 0.5,

Optional (default False):

Use MUSCL reconstruction at P=0

'Use MUSCL Reconstruction': False,

Optional (default False)

'BR2 Diffusive Flux Scheme' : False,

Optional (default False)

'Use Rusanov for turbulence equations' : False,

Optional (default False)

'Shock Sensing': False,

'Shock Sensing k': 1.0,

'Shock Sensing Viscosity Scale': 1.0,

Variable used for shock sensing, one of: 'density', 'temperature', 'mach’,
— '"turbulence’

'Shock Sensing Variable': 'density',

}7

Hence all the available keys for 'DGeuler' are a combination of the 'euler' keys and the 'DG. .. ' keys. The
same logic applies to the 'DGRANS', 'DGviscous' and 'DGLES' equation sets.

'DGeuler' : {
Spatial polynomial order 0,1,2,3
'order' : 2,
Optional (default False)
Use low speed mach preconditioner
'precondition' : True,
Optional (default 'HLLC')
scheme for invisced fluz: HLLC or Rusanov
'Inviscid Flux Scheme': 'HLLC',
Optional (default False)
'Approximate curved boundaries': False,
Optional (default 0.0)
'cll stability parameter': 0.0,
Optional (default 0.0):
cl1 stability parameter for transported variables - default 0.0
'cll stability parameter transport': 0.0,
Optional (default 0.5)
'LDG upwind parameter': 0.5,
'LDG upwind parameter aux': 0.5,
Optional (default False):
Use MUSCL reconstruction at P=0
'Use MUSCL Reconstruction': False,

(continues on next page)

12 Chapter 1. Version: v2019.06.86

zCFDguide Documentation, Release v2019.06.86

(continued from previous page)

Optional (default False)

'BR2 Diffusive Flux Scheme' : False,

Optional (default False)

'Use Rusanov for turbulence equations' : False,

Optional (default False)

'Shock Sensing': False,

'Shock Semnsing k': 1.0,

'Shock Sensing Viscosity Scale': 1.0,

Variable used for shock sensing, one of: 'density', 'temperature', 'mach’,
— '"turbulence’

'Shock Sensing Variable': 'density',

}’

1.6.6 DG Order Specification

Regions of the mesh may be specified be be a certain order in the DG solver. This can be done by supplying a
list of dictionaries containing any number of entries of the following types

'cell order' : [{'type' : 'wall distance',
'order' : O,
'distance' : 1000.0},
{'type' : 'wall distance',
'order' : 1,
'distance' : 2.0},
{'type' : 'sphere',
'order' : O,
'radius' : 1.0,
'centre' : [0.0, 0.0, 0.01},
{'type' : 'cartesian',
'order' : O,
xmin, xTmaxT, ymin, ymar, 2zmin, 2zmaT
'box' : [0.0, 1.0, 0.0, 1.0, 0.0, 1.0]}
]’

1.6.7 DG Nodal locations

The location of the DG solution points must be specified in the parameters dictionary. The definitions first
need to be imported by including this import statement at the start of the control dictionary

‘from zcfd.solvers.utils.DGNodalLocations import *

To use the default values

'Nodal Locations' : nodal_locations_default['Nodal Locations']

Or select from the available types

'Nodal Locations' : {

Options line_evenly_spaced, line_gauss_lobatto or line_gauss_legendre_
—lobatto

'Line': 1line_gauss_legendre_lobatto,

Options tet_evenly_spaced, tet_shunn_ham

'Tetrahedron': tet_evenly_spaced,

Options tri_evenly_spaced, tri_shunn_ham

'Tri' : tri_evenly_spaced,

}’

1.6. Control Dictionary 13

zCFDguide Documentation, Release v2019.06.86

1.6.8 Material Specification

The user can specify any fluid material properties by following the (default) scheme for ‘air’:

'material' : 'air',
Options
tair' : {

'gamma' : 1.4,

'gas constant' : 287.0,
'Sutherlands const': 110.4,
'Prandtl No' : 0.72,
'Turbulent Prandtl No' : 0.9,

1.6.9 Initial Conditions

The intial condition properties are defined using consecutively numbered blocks

'IC_1t o {.. L3,
‘1.2 {....},
'1¢_3' ¢ {....},

Each block can contain the following options

Required: Static temperature in Kelvin
'temperature': 293.0,

Required: Static pressure in Pascals
'pressure’':101325.0,

Fluid velocity
AR
Velocity vector
'vector' : [1.0,0.0,0.0],
Optional: specifies velocity magnitude
'Mach' : 0.20,
1,

Dynamic (shear, absolute or molecular) viscosity should be defined at the static temperature previously spec-
ified. This can be specified either as a dimensional quantity or by a Reynolds number and reference length

Dynamic viscostity in dimensional units
'viscosity' : 1.83e-5,

or

Reynolds number
'Reynolds No' : 5.0e6,

Reference length
'Reference Length' : 1.0,

Turbulence intensity is defined as the ratio of velocity fluctuations u' to the mean flow velocity. A turbulence
intensity of 1% is considered low and greater than 10% is considered high.

Turbulence intensity /

'turbulence intensity': 0.01,

Turbulence intensity for sustainment [
'ambient turbulence intemnsity': 0.01,

14 Chapter 1. Version: v2019.06.86

zCFDguide Documentation, Release v2019.06.86

The eddy viscosity ratio (u;/) varies depending type of flow. For external flows this ratio varies from 0.1 to 1
(wind tunnel 1 to 10)

For internal flows there is greater dependence on Reynolds number as the largest eddies in the flow are limited
by the characteristic lengths of the geometry (e.g. The height of the channel or diameter of the pipe). Typical
values are:

Re 3000 | 5000 | 10,000 | 15,000 | 20,000 | >100,000
eddy | 11.6 | 16.5 | 26.7 34.0 50.1 100

Eddy viscosity ratio

'eddy viscosity ratio': 0.1,

Eddy viscosity ratio for sustainment
'ambient eddy viscosity ratio': 0.1,

The user can also provide functions to specify a ‘wall-function’ - or the turbulence viscosity profile near a
boundary. For example an atmospheric boundary layer (ABL) could be specified like this:

'profile' : {

"ABL' : {
'roughness length' : 0.0003,
'friction velocity' : 0.4,
'surface layer height' : -1.0,
'Monin-Obukhov length' : -1.0,
Non dimensional TKE/friction velocity#*2
'TKE' : 0.928,
ground level (optional if nmot set wall distance is used)
'z0' : -0.75,
1,
1,
'profile' : {
'field' : 'inflow_field.vtp',
Localise field using wall distance rather that z coordinate
'use wall distance' : True,

}!

Note: The conditions in the VTK file are specified by node based arrays with names ‘Pressure’, “Temperature’,
‘Velocity’, ‘TT" and ‘EddyViscosity’. Note the field will override the conditions specified previously therefore the
user can specify only the conditions that are different from default.

Certain conditions are specified relative to a reference set of conditions

'reference' : 'IC_1",

total pressure/reference static pressure
'total pressure ratio' : 1.0,

total temperature/reference static temperature
'total temperature ratio' : 1.0,

Mach number

'mach' : 0.5,

Direction wvector

'vector' : [1.0,0.0,0.0],

'reference' : 'IC_1"',
static pressure/reference static pressure
'static pressure ratio' : 1.0,

1.6. Control Dictionary 15

zCFDguide Documentation, Release v2019.06.86

'reference' : 'IC_1",
Mass flow ratio
'mass flow ratio' : 1.0,

. * _ i
Note: W =V

1.6.10 Boundary Conditions

Boundary condition properties are defined using consecutively numbered blocks

'BC_1' : {....},
'BC_2' : {....},

zCFD will automatically detect zone types and numbers in a number of mesh formats, and assign appropriate
boundary conditions. The type tags follow the Fluent convention (wall = 3, etc), and if present no further
information is required. Alternatively, the mesh format may contain explicitly numbered zones (which can
be determined by inspecting the mesh). In this case, the user can specify the list of zone numbers for each
boundary condition ‘type’ and ‘kind’ (see below).

Wall

Wall boundaries in zCFD can be either slip walls, no-slip walls, or use automatic wall functions. No-slip walls
are appropriate when the mesh is able to fully resolve the boundary layer (i.e (y* < 1)) otherwise automatic
wall functions should be used. This behaviour is chosen by setting 'kind' in the wall specification below.
Optionally it is possible to set wall velocity, roughness and temperature.

'BC_1' : {
Zone type tag
'ref' : 3,
Optional: Specific zome boundary condition overide
'zone' : [0,1,2,3],
Required: Boundary condition type

'type' : 'wall',

Type of wall, one of 'slip', 'moslip', 'wallfunction'
'kind' : 'slip',

Optional: Roughness spectification

'roughness' : {

Type of roughness specification (option: height or length)
'type' : 'height',
Constant roughness
'scalar' : 0.001,
Roughness field specified as a VIK file
'field' : 'roughness.vtp',
1,
Optional: Wall velocity specification either 'linear' or 'rotating' dictionary,
—supplied
o Ao
'linear' : {
Velocity vector
'vector' : [1.0,0.0,0.0],
Optional: specifies velocity magnitude
'Mach' : 0.20,
1,
'rotating' : {
Rotational welocity in rad/s
'omega' : 2.0,
Rotation azis

(continues on next page)

16 Chapter 1. Version: v2019.06.86

zCFDguide Documentation, Release v2019.06.86

(continued from previous page)

'axis' : [1.0,0.0,0.0],
Rotation origin
'origin' : [0.0,0.0,0.0],
1,
1,
Optional: Wall temperature specification either a constant 'saclar' value or a
—'profile’ from file
'temperature' : {
Temperature in Kelvin
'scalar' : 280.0,
Temperature field specified as a VIK file
'field' : 'temperate.vtp',
1,
1,

Note: The roughness at each boundary face is set by finding the nearest point to the face centre on the supplied
VTK file with the roughness value looked up in a node based scalar array called ‘Roughness’

Note: The temperature at each boundary face is set by finding the nearest point to the face centre on the
supplied VTK file with the temperature value looked up in a node based scalar array called ‘Temperature’

Farfield

The farfield boundary condition can automatically determine whether the flow is locally an inflow or an out-
flow by solving a Riemann equation. The conditions on the farfield boundary are set by refering to an 'IC_"'
block. In addition to this an atmospheric boundary layer profile or a turbulence profile may be set.

'BC_2' : {
Zone type tag
'ref' : 9,
Optional: Specific zone boundary condition overide
'zone' : [0,1,2,3],
Required: Boundary condition type
'type' : 'farfield',
Required: Kind of farfield options (riemann, pressure or supersonic)
'kind' : 'riemann',
Required: Farfield conditions
'condition' : 'IC_1',
Optional: Atmospheric Boundary Layer
'profile' : {
"ABL' : {
Roughness length
'roughness length' : 0.05,
Fiction velocity
'friction velocity' : 2.0,
Surface Layer Heigh
'surface layer height' : 1000,
'Monin-Obukhov length' : 2.0,
Turbulent kinetic energy

'TKE' : 1.0,
Ground Level
'z0' : 0.0,
1,
1,
Optional: Specify a turbulence profile
'"turbulence' : {

(continues on next page)

1.6. Control Dictionary 17

zCFDguide Documentation, Release v2019.06.86

(continued from previous page)

'length scale' : 'filename.vtp',
'reynolds tensor' : 'filename.vtp',

}’

Inflow

zCFD can specify two kinds of inflow boundary condition: pressure or massflow, selected using the 'kind'
key. When using the pressure inflow the boundary condition is specified by a total pressure ratio and a total
temperature ratio that needs to be defined by the condition this refers to. When using the massflow condition
a total temperature ratio and massflow ratio is required.

'BC_3' : {
Zone type tag
'ref' : 4,
Optional: Specific zone boundary condition overide
'zone' : [0,1,2,3],
Required: Boundary condition type

'type' : 'inflow',

Required: Kind of inflow, either 'default' for presure or 'massflow'’
'kind' : 'default',

Required: Reference inflow conditions

'condition' : 'IC_2',

1,

Example Pressure Inflow

An example setup for a pressure inflow is given below:

'Ic_1t o
'temperature' : 293.0,
'pressure' : 101325.0,
AREE
'vector' : [1.0,0.0,0.0],
'Mach' : 0.20,
1,
'Reynolds No' : 1.0e6,
'Reference Length' : 1.0,
'turbulence instensity' : 0.1,
'eddy viscosity ratio' : 1.0,
1},
'Ic_2' Ao
'reference' : 'IC_1"',
'total temperature ratio' : 1.0,
'total pressure ratio; : 1.0,
1,
'BC_3" : {
'ref' : 4,
'zone' : [0,1,2,3],
'type' : 'inflow',
'kind' : 'default',
'condition' : 'IC_2',

}’

18 Chapter 1. Version: v2019.06.86

zCFDguide Documentation, Release v2019.06.86

Outflow

Pressure or massflow outflow boundaries are specified in a similar manner to the /72f/oivboundary. They can be
of :code”’kind’‘ 'pressure', 'radial pressure gradient' or 'massflow'. When either pressure bound-
ary is set the 'IC_' conditions it refers to must set a static temperaure ratio, when 'massflow’ is specified a
massflow ratio must be set.

'BC_4' : {
Zone type tag
'ref' : 5,
Optional: Specific zone boundary condition overide
'zone' : [0,1,2,3],
Boundary condition type

'type' : 'outflow',
Kind of outflow 'pressure, 'massflow’ or 'radial pressure gradient'’
'kind' : 'pressure',

Required only when using 'radial pressure gradient'
Radius at which the static pressure ratio is defined

'reference radius' : 1.0,
Outflow conditions
'condition' : 'IC_2',
}’

Symmetry

'BC_5" : {
Zone type tag
'ref' : 7,

Optional: Specific zone boundary condition overide
'zone' : [0,1,2,3],

Required: Boundary condition type

'type' : 'symmetry',

1

Periodic

This boundary condition needs to be specified in pairs with opposing transformations. The transforms speci-
fied should map each zone onto each other.

'BC_6' : {
Required: Specific zone index
'zone' : [1],
Required: Type of boundary condition
'type' : 'periodic',
Required: Either 'rotated' or 'linear' periodicity
'kind' : {

Rotated periodic settings

'rotated' : {
'theta' : math.radians(120.0),
'axis' : [1.0,0.0,0.0],
'origin' : [-1.0,0.0,0.0],

}1

Linear periodic settings

'linear' : {
'vector' : [1.0,0.0,0.0],
},

1.6. Control Dictionary 19

zCFDguide Documentation, Release v2019.06.86

1.6.11 Fluid Zones

The fluidic zone properties are defined using consecutively numbered blocks like

'Fz_1' : {....},
'Fz_2' : {....},
'Fz_3' : {....},

For actuator disk zones

'FZ_1':{
'type':'disc’',
'def':'T38-248.75.vtp',
'thrust coefficient':0.84,
'tip speed ratio':6.0,
'centre':[-159.34009325,-2161.73165187,70.0],
'up':[0.0,0.0,1.0],
'normal':[-1.0,0.0,0.0],
'inner radius':2.0,
'outer radius':40.0,
Location of reference conditions used to calculate thrust from C
'reference point': [1.0,1.0,1.0],

1.6.12 Mesh Transformations

Radial Basis Functions (RBFs) can be used to deform the volume mesh according to the motion of some or all
of the boundary nodes. zCFD can perform an arbitrary number of transforms which are specified in consecu-
tively numbered blocks.

'"TR_1' : {...},
'"TR_2' : {...},

'"TR_1' : {
Required: list of surface zones to deform
'zone' : [4],
Required: function describing surface deformation
'func' : transWing,

Required: support radius of RBFs
'alpha' : 200.0,
Required: type of RBF, ome of c0, c2, gaussian, tps
'basis' : 'c2',
Required: mazimum error tolerance for greedy algorithm
'tol' : 0.005,
Optional: Surface zones that remain fized
'fixed' : {
'zone' : [1],
3,
1,

An example of a function to deform a surface is given below

def transWing(x,y,z):

ymax = 1.0

ymin = 0.1

yNorm =(y-ymin)/(ymax-ymin)

X2 = X

y2 =y

z2 = z

if y > 0.1 and y < 1.1 and x < 1.1 and x > -0.1 and z > -0.1 and z < 0.1:

(continues on next page)

20 Chapter 1. Version: v2019.06.86

zCFDguide Documentation, Release v2019.06.86

(continued from previous page)

z2 = z - 0.5%(20.0*%yNorm**3 + yNorm**2 + 10.0*yNorm)/31.0

return {'vl' : x2, 'v2' : y2, 'v3' : z2}

1.6.13 Reporting

In addition to standard flow field outputs (see below), zCFD can provide information at monitor points in the
flow domain, and integrated forces across all parallel partitions, any number of 'MR_"', 'FR_"' or 'MF_' blocks
may be spcified.

'report' : {

Report frequency
'frequency' : 1,
Extract specified vartable at fized locations
'monitor' : {
Consecutively numbered blocks
'MR_1' : {
Required: Output name
'name' : 'monitor_1',
Required: Location
'point' : [1.0, 1.0, 1.0],
Required: Variables to be extracted
'variables' : ['V','ti'],
1,
1,

Report force coefficient in grid azis as well as using user defined transform
'forces' : {
Consecutively numbered blocks
'"FR_1' : {
Required: Output name
'name' : 'force_1',
Required: Zones to be included
'zone' : [1, 2, 3],
Transformation function
'transform' : my_transform,
Optional (default 1.0):
'reference area' : 0.112032,
Optional (default 1.0):
'reference length' : 1.0,
Optional (default [0.0,
'reference point' : [0.0,

}’

, 0.0]):
0.0]1,

o o
o o

},

Report massflow rTatzo
'massflow' : {
Consecutively numbered blocks
'MF_1' : {
Required: Output name
'name' : 'massflow_1',
Required: Zones to be included
'zone' : [1, 2 ,3],
1,

1.6. Control Dictionary 21

zCFDguide Documentation, Release v2019.06.86

Example Transformation Function

A transformation function my be supplied to the force report block to transform the force into a different
coordinate system, this a particularly useful for reporting lift and drag which are often rotated from the solver
coordinate system.

Angle of attack
alpha = 10.0
Transform into wind azis
def my_transform(x,y,z):
v = [x,y,z]
v = zutil.rotate_vector(v,alpha,0.0)
return {'vl' : v[0], 'v2' : v[1], 'v3' : v[2]}

1.6.14 Output

For solver efficiency, zCFD outputs the raw flow field data (plus any user-defined variables) to each parallel
partition without re-combining the output files. The 'write output' dictionary controls solver output.

'write output' : {

Required: Output format: 'vtk', 'ensight', 'native’

'format' : 'vtk',

Required: Variables to output on each boundary type

'surface variables': ['V','p'],

Required: Field variables to be output

'volume variables' : ['V','p'],

Optional: Volume interpolation - interpolates cell walues to points ing,
—supplied meshes

'volume interpolate' : ['mesh.vtp', 'mesh.vtu'],

Optional: Paraview catalyst scripts

'scripts' : ['paraview_catalystl.py','paraview_catalyst2.py'],

Optional: If downstream processes need wvartables named using a spectificy
—convention a nmaming alias dictionary can be supplied

'variable_name_alias' : { "V" : "VELOCITY", 1},

Required: Output frequency

'frequency' : 100,

Optional for DG: Output high order surface data on zones

'high order surface list' : [1],

Only for time accirate simulations:

Start output after real time cycle

'start output real time cycle' : 100,

Unsteady restart file output frequency

'unsteady restart file output frequency' : 1000,

Output real time cycle frequency

'output real time cycle frequency' : 10,

Optional (default False):

Don't output vtk volume data

'no volume vtk' : False
} s
Output Variables
Variable Name Alias | Definition
temperature Tt Temperature in (K)
temperaturegrad Temperature gradient vector
potentialtemperature Potential temperature in (K)
pressure P Pressure (Pa)

Continued on next page

22 Chapter 1. Version: v2019.06.86

zCFDguide Documentation, Release v2019.06.86

Table 1 — continued from previous page

Variable Name Alias | Definition

gauge_pressure Pressure relative to the reference value (Pa)

density rho | Density (kg/m?®)

velocity V, v Velocity vector (m/s)

velocitygradient Velocity gradient tensor

cp

totalcp Total presure coefficient

mach m

viscosity mu Dynamic viscosity (Pa/s)

kinematicviscosity nu Kinematic viscosity (m?/s)

vorticity 1/s)

Qcriterion Q criterion

reynoldstress

helicity

enstrophy

ek

lesregion Different depending on turbulence model??

turbulenceintensity ti Turbulence intensity

turbulencekineticenergy J'kg)

turbulenceeddyfrequency (1/s)

eddy Eddy viscosity (Pa/s)

cell_velocity

cellzone

cellorder

centre Cell centre location

viscouslengthscale Defined?? Minium distance between cell and its neighbours

walldistance Wall distance (m)

sponge Sponge layer damping coefficient
Variable Name Alias | Definition
pressureforce Pressure component of force on a face
pressuremoment Pressure component of moment on a face
pressuremomentx Component of pressure moment around x axis
pressuremomenty Component of pressure moment around y axis
pressuremomentz Component of pressure moment around z axis
frictionforce Skin friction component of force on a face
frictionmoment Skin friction component of moment on a face
frictionmomentx Component of skin friction moment around x axis
frictionmomenty Component of skin friction moment around y axis
frictionmomentz Component of skin friction moment around z axis
roughness Wall roughness height
yplus Non-dinemsional wall distance
zone Boundary zone number
cf Skin friction coefficient
facecentre Face centre location
frictionvelocity ut Friction velocity at the wall

1.6. Control Dictionary

23

https://en.wikipedia.org/wiki/Pressure_coefficient
https://en.wikipedia.org/wiki/Mach_number
https://en.wikipedia.org/wiki/Vorticity
https://en.wikipedia.org/wiki/Reynolds_stress
https://en.wikipedia.org/wiki/Hydrodynamical_helicity
https://en.wikipedia.org/wiki/Turbulence_kinetic_energy
https://en.wikipedia.org/wiki/SST_(Menter%E2%80%99s_Shear_Stress_Transport)#K-W_Closure

zCFDguide Documentation, Release v2019.06.86

zCFD uses unstructured meshes written in an file format. HDF5 provides a flexible, self describing
specification supporting parallel I/O that can be tuned per filesystem type (e.g NFS, GPFS, Lustre etc).

Meshes from a wide variety of sources can be easily converted into this format as follows:

We provide a range of converters for popular mesh types via a special version of the open-source CFD code
OpenFOAM, available freely for download

Once downloaded and installed, the version of OpenFOAM will convert a range of file formats to the zCFD
format. Prior to running any of these, you will need to activate your OpenFOAM environment using

source $FOAM_INST_DIR/OpenFOAM-x.x.x/etc/bashrc

To convert from an OpenFOAM format mesh to zCFD, run the following command in the MESH directory.

foamTozCFD

This will create a new folder called zInterface/ containing the HDF5 file.

The converter for files is a utility called fluent_convert. This is included in the path set by acti-
vating the zCFD command line environment.

To run the utility, use

(zCFD) : fluent_convert <filename>.msh <new_filename>.h5

or

(zCFD) : fluent_convert <filename>.cas <new_filename>.h5

The will produce 2 files: the zCFD HDF5 file and the name_zone.py python file which holds the fluid and
boundary zone names.

There are a number of different file formats for meshes. The <filename>.sim file isin a
propietary format and at this stage cannot be converted. The <filename>.ccm can be converted using

(zCFD) : ccmconvert <filename>.ccm <new_filenam>.h5

This produces the zCFD HDF5 file.

This utility will convert an unstructured, non-chimera, hexahedral mesh in CGNS (ref) format. The converter
will handle meshes with element types (HEXA_8):

24 Chapter 1. Version: v2019.06.86

http://www.hdfgroup.org/HDF5/
https://github.com/zCFD/foamTozCFD.git
http://www.ansys.com/Products/Simulation+Technology/Fluid+Dynamics/Fluid+Dynamics+Products/ANSYS+Fluent
http://www.cd-adapco.com/products/star-ccm%C2%AE

zCFDguide Documentation, Release v2019.06.86

(zCFD) : cgnsconvert <filename>.cgns <new_filenam>.h5

This produces the zCFD HDF5 file. If you require support for additional element types please contact us:
mailto:zcfd@zenotech.com.

1.7.6 UGRID Mesh Converter

UGRID is a NASA format for meshes (ref). You must follow the naming convention (ref) for UGRID files, which
describes the format and endian-ness of the file data (“ascii8”, “b8”, “1b8”, or “r8”) depending upon which lan-
guage (C or FORTRAN) was used to create the file. The mapbc file is optional and if not provided the boundary
conditions of the zones default to wall.

(zCFD) : ugridconvert <filename>.[ascii8, b8, 1b8, r8].ugrid <new_filename>.h5 <filename>.mapbc

This produces the zCFD HDF5 file.

1.7.7 DLR Tau Mesh Converter

Tau is a CFD solver produced by the DLR (http://tau.dlr.de/startseite/). Note that Tau is a node-based solver
so flow field variables are calculated for and stored at the mesh nodes (or vertices) rather than at cell centres
(the approach used by Star CCM+, OpenFOAM, CFX and zCFD). Thus simply converting the file format will
not guarantee a good result. In many cases, the conversion will not result in a valid cell-centred zCFD mesh.

‘(ZCFD): tauconvert <filename>.XXX <new_filename>.h5

This produces the zCFD HDF5 file.

1.8 Visualisation

zCFD by default will output data in VIK (http://www.vtk.org/) format. This format can be read directly by
many post-processing tools including ParaView (http://www.paraview.org/) by Kitware.

Output in other formats is also possible, including TECPLOT (http://www.tecplot.com/) and EnSight (https:
/ [www.ceisoftware.com/) as follows:

1.8.1 EnSight Output

To output in EnSight format, use the following option in the write output’ part of the control dictionary:

'write output' : {
Output format
'format' : 'emnsight',

1.8.2 Native HDF5 Output

To output in HDF5 format (the native format for zCFD), use the following option in the ‘write output’ part of
the control dictionary:

'write output' : {
Output format
'format' : 'mative',

1.8. Visualisation 25

mailto:zcfd@zenotech.com
http://tau.dlr.de/startseite/
http://www.vtk.org/
http://www.paraview.org/
http://www.tecplot.com/
https://www.ceisoftware.com/
https://www.ceisoftware.com/

zCFDguide Documentation, Release v2019.06.86

By default, zCFD will output data in VTK format. To explicitly force VTK output, use the following option in the
‘write output’ part of the control dictionary:

'write output' : {
Output format
'format' : 'vtk',

ParaView provides a powerful yet lightweight interface that allows parallel processing of simulation data during
programme execution called ParaView Catalyst (). This is driven by scripts
(Python files) that can be called when data is output:

'write output' : {
Output format MUST be VIK
'format' : 'vtk',
The scripts should be in the same directory as the input files
'scripts' : ['paraview_catalystl.py','paraview_catalyst2.py']

To download the free ParaView software for visualising VTK format data on the local device, just visit the Par-
aView website ().

In addition to running entirely locally on a device, ParaView can interface to a remote server. This allows users
to run ParaView to access data that is held (and processed) on a different computer, potentially running larger
simulation tasks that would be possible on the local machine. This also means that there is no need to transfer
the large output files back to a local machine for post-processing. The remote machine can easily be set up to
run a ParaView Server in parallel - meaning that very large post-processing jobs can be run quickly.

To download and install ParaView Server, you can either use the version on the main ParaView website and
follow the instructions here (), or else use the
Zenotech version (). We currently recommend the Zenotech ver-
sion as it contains a number of fixes for parallel post-processing that have not yet been added to the main
release.

Zenotech has created an open-source post-processing code suite called zPost, which is available for free down-
load (). zPost makes use of ParaView and iPython ().
zPost is ideally suited to post-processing data generated by zCFD, and can exploit the full power of parallel,
remote processing. The repository for zPost contains numerous examples to help with the generation of stan-
dard CFD outputs.

26 Chapter 1. Version: v2019.06.86

http://www.paraview.org/in-situ/
http://paraview.org
http://www.paraview.org/Wiki/Setting_up_a_ParaView_Server
https://github.com/zenotech/ParaView.git
https://github.com/zenotech/zPost.git
http://ipython.org/

zCFDguide Documentation, Release v2019.06.86

You must have Python 2.7 () installed, including the vir-
tualenv package. ParaView must also be installed. Once you have downloaded zPost, change to the
zPost/scripts directory and run:

> ./create_virtualenv.bsh

This will install all the required python packages in zPost/zpost-py27. If there are aditional package that you
want to include in the Python environment, just add them to the zPost/Requirements.txt file.

One of the easiest ways to use Python is via an interactive notebook on your local computer. The notebook is
just a locally hosted server that you can access via a web-browser. This makes saving, re-running and viewing
the zPost output straightforward.

To automatically start up notebook server on your computer within the zPost environment, change to the
scripts directory and run:

> ./start_notebook

This should launch a web-browser automatically.

Note

This will use the default version of ParaView. If you want to run a custom version of ParaView please set the
PARAVIEW_HOME variable in your shell before starting the notebook server

zCFD is bundled with a number of utility functions to streamline specific workflows:

Windfarms consist of a set of specific turbine types at geographic locations. zCFD allows users to specify the
turbine characteristics and locations, and will automatically create turbine models within an existing mesh
and update the local flow conditions to match the thrust coefficient and tip speed ratio for each turbine.

zCFD provides a utility function create_trbx_zcfd_data that can be called from within the zCFD environment
and Python interactive shell. To start the zZCFD command line environment, type:

> source /INSTALL_LOCATION/zCFD-version/bin/activate

1.9. Utilities 27

https://www.python.org/download/releases/2.7/
http://nbviewer.ipython.org/github/zenotech/zPost/tree/master/ipynb/

zCFDguide Documentation, Release v2019.06.86

The command prompt will now appear with a (zCFD) prefix. To run the create_trbx_zcfd_data utility, start the
interactive Python shell:

> (zCFD) > python

The utility takes several arguments:

import zutil.farm as farm
farm.create_trbx_zcfd_input(case_name='windfarm_name',
wind_direction=267.0,
reference_wind_speed=10.0,
terrain_file=None,
report_frequency=100,
update_frequency=1,
reference_point_offset=1.0,
turbine_zone_length_factor=2.5,
model='simple',
turbine_files=[['xy_file_1.txt', 'turbine_type_1.trbx'],
['xy_file_2.txt','turbine_type_2.trbx']])

The utility will read each [<xy_file>, <trbx_file>] pair provided. The terrain file is any file format that can be
read by ParaView (STL, VTK) to use as the basis for the ground level at any given location. The default ‘None’
sets ground level to 0. The model uses a reference velocity at a point upstream of the turbine. The point is offset
upstream by a factor applied to the rotor diameter. The fluid zone associated with the turbine is a cylinder with
diameter equal to the rotor diameter and length given by the turbine zone length factor. The model is either a
an induction model where the induction factor is automatically calculated from the thrust coefficient and 1D
momentum theory, or the simple model where the reference velocity is equal to the velocity at the rotor. The
<xy_file>is a 3-column data file in ASCII format with <turbine name>, <easting>and <northing> data such as:

TOO1 251865.0 646486.0
T002 252240.0 646200.0

TO15 253308.0 647985.0

The TRBX file is a data file with turbine information provided by manufacturers including a description of the
turbine geometry and aerodynamic performance characteristics.

The utility extracts key information from the TRBX file to automatically create a turbine definition
(<case_name>_zones.py) with an entry for each turbine in the array:

turb_zone = {
'FZ_1':{
'type':'disc’',
'def':'./turbine_vtp/T001-267.0.vtp',
'thrust coefficient':0.821,
'thrust coefficient curve':[[0.0,0.0],[1.0,0.0],...,[51.0,0.0],],
'tip speed ratio':8.79645943005,
'tip speed ratio curve':[[0.0,0.0],[1.0,0.0],...,[61.0,0.0],],
'centre':[251865.0,646486.0,338.5],
'up':[0.0,0.0,1.0],
'normal': [-0.998629534755,-0.0523359562429,-0.0],
'inner radius':1.95500004292,
'outer radius':60.0,
'reference point':[251745.164456,646479.719685,338.5],
},

The turbine_vtk/<turbine>.vtp file defining the fluid zone for each turbine is also automatically created. The
‘thrust coefficient’ is defined as a single value, and if a data point curve is present in the TRBX file this data
is also supplied as the tuple array ‘thrust coefficient curve’, where the wind speed in metres per second is the
index. If this curve is provided, the utility will interpolate the curve at the reference speed to create the single

28 Chapter 1. Version: v2019.06.86

zCFDguide Documentation, Release v2019.06.86

value otherwise a default value (10 m/s) is used.

The same approach is taken for the %ip speed ratio’ single value and curve - which is automatically calculated
from the rotor speed array (revolutions per minute) in the TRBX file.

The ‘centre’ is the centre of the disc, which is automatically determined from the nominal hub height in the
TRBX file as an offset to the ground height at the specified location. The local ground height is automatically
determined from the VTK output files from a previous solver run. Note that the VIK ground data can be created
with a single cycle of the solver, and does not need to include any turbines.

The vertical orientation is defined by the ‘up’ vector - normally this will be the unit vector in the z-direction.
The ‘normal’ defines the vector perpendicular to the disc. The inner and outer radii are based on the TRBX
definition of the size of the disc. No account is made of the hub or tower geometry.

The ‘reference point’ defines the location in the flow domain that is used as the reference value of wind velocity
for this turbine. This velocity is used in combination with the thrust coefficient and the tip speed ratio for zCFD
to calculate the momentum sources associated with the turbine. By default the reference point is automatically
located 1.0 turbine diameters upstream of the disc centre, assuming that the reference wind direction is also
the local wind direction. This is easy to modify.

The utility also automatically creates a set of monitor points for each turbine, all in a single file
(<case_name>_probes.py):

turb_probe = {
'report' : {
'frequency' : 100,

'monitor' : {
'"MR_1' : {
'name' :'probel@MHH@87',
'point' : [251865.0,646486.0,338.5],
'variables' : ['V', 'ti'],
},
}

The frequency’is the number of solver cycles between outputs, and the ‘monitor’ defines the name of the probe
using the WindFarmer standard notation.

Because the zone and probe files are automatically created, the following lines must be added to the end of the
standard zCFD parameter definition file <case_name>.py to insert the data:

z = zutil.get_zone_info('<case_name>_zones')
for key,value in z.turb_zone.items():
parameters [key]l=value

p = zutil.get_zone_info('<case_name>_probes')
for key,value in p.turb_probe.items():
parameters [key]=value

When run, zCFD will include the probe data in the <case_name>_report.csvfile. Note that this utility make take
a few seconds to run, especially if there are large numbers of turbines, or points on the mesh boundary.

In order to export the data from a zCFD run in a format that can be read by WindFarmer, we provide the utility
write_windfarmer_data, with usage:

import zutil.farm as farm
farm.write_windfarmer_data(case_name='windfarm_name',
num_processes=48,
up = [0,0,1])

1.9. Utilities 29

zCFDguide Documentation, Release v2019.06.86

The up vector is used to check that the orientation expected by WindFarmer is that same as the orientation
used in the simulation. In most cases this will be the z-axis.

The utility will output the probe information plus additional fields, calculated automatically.

30 Chapter 1. Version: v2019.06.86

	Version: v2019.06.86
	Overview
	Formulation
	License
	Execution
	MyCluster
	Control Dictionary
	Mesh Conversion
	Visualisation
	Utilities

