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CHAPTER

ONE

VERSION: V2021.07.123

1.1 Overview

1.1.1 What is zCFD

zCFD is a computational fluid dynamics (CFD) solver designed to make highly effective use of modern com-
puter architectures. The code will run on unstructured meshes from a variety of sources, and will export data
in many common formats.

zCFD is a density-based finite volume solver, allowing steady-state or time-dependent, turbulent flow simu-
lation. The numerical scheme has been selected for accuracy and robustness. The code provides automatic
scaling of turbulent wall functions; automatic determination of inflow / outflow conditions and automatic
pre-conditioning to allow for low and high Mach number flow.

zCFD makes use of the MPI protocol to manage execution over a set of compute nodes. The execution process
is completely parallel from the start to finish including all the Input/Output (IO) functionality. To support
this scalable implementation the mesh input is provided in hdf5 format which is portable and self describing.
Filters are provided to convert the most frequently used formats to this internal format.

zCFD uses a single control dictionary to specify all the parameters. This is a python file containing a python
dictionary with certain mandatory keys. The use of python for the control dictionary enables the user to add
custom functions that populate the dictionary at runtime.

zCFD is a hybrid of an open-source (freely available without restriction) front-end (“ZCFD Driver”) and pro-
prietary (closed-source) back-end (“ZCFD Core”). Anyone can develop “ZCFD Driver” for their own purposes
including commercial exploitation.

1.2 Formulation

1.2.1 Numerical Scheme

zCFD is a many-core accelerated Computational Fluid Dynamics solver that solves the Steady or Unsteady
Reynolds Averaged Navier Stokes (RANS) equations using the finite volume technique. This is based on a cell
centred approach on arbitrary polyhedral meshes with the boundary conditions applied in a strong formula-
tion. The scheme implemented is formally second order accurate in time and third order accurate in space.

The spatial accuracy is achieved by using a slope limited MUSCL reconstruction at cell interfaces. The HLLC
scheme is then used with the reconstructed values to calculate the interface flux.

The primary solver is based on a multi-stage explicit solver using local time stepping and geometric multigrid
to accelerate convergence.

Turbulence modelling is provided by an implementation of Menter SST two equation model which is can be
used in low Reynolds number mode (i.e. integration to the wall) or high Reynolds number mode (i.e. wall
functions).
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1.3 License

zCFD requires a license. If you do not already have a license, please contact mailto:zcfd@zenotech.com to
obtain one. The license file provided can be placed in the same directory alongside the input files or else its
location can be defined using the environment variables below

export RLM_LICENSE=port@server

or

export RLM_LICENSE=/path/to/license/file

In the case that the system running the simulation cannot access the internet a local license server will be
required. See http://www.reprisesoftware.com/admin/software-licensing.php for details.

1.4 Execution

zCFD is run from the command line using a customised environment that automatically sets up all of the
paths and file locations correctly. To make the execution of parallel jobs easier, we also provide the free tool
MyCluster that simplifies the interaction with a range of job schedulers.

1.4.1 (zCFD) Command Line Environment

To run zCFD, the zCFD command line environment must be active. The zCFD command line environment is
initialised from a terminal window by sourcing the activate script in the zCFD installation directory. It does
not matter where this directory is - all of the executable paths and file locations will be set automatically:

> source /INSTALL_LOCATION/zCFD-version/bin/activate

This sets up the environment to enable execution of the specific version. When this environment is active, you
should see a prefix to your command prompt, such as:

(zCFD) >

To deactivate the command line environment, returning the environment to the previous state use

(zCFD) > zdeactivate

Your command prompt should return to its normal appearance.

1.4.2 Smartlaunch

zCFD makes very effective use of a range of processor types and computer configurations. We provide a smart-
launch.bsh script with zCFD to automatically detect the processor type and the presence of any accelerators
(like Nvidia GPUs or Intel Xeon Phi’s).

Smartlaunch uses this information to calculate the number of OpenMP threads to set per MPI task and to
perform NUMA binding to specific cores and memory banks.

The optimum number of execution tasks ($NTASKS below) should match the total number of sockets (usually
two per node) not the number of cores. This configuration will also work for systems with accelerators present.

It is also recommended to always use any computational nodes in exclusive mode to achieve the best perfor-
mance.

2 Chapter 1. Version: v2021.07.123
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# PROBLEM_NAME is the name of the hdf5 file containing the mesh
# CASE_NAME is the name of the python control

run_zcfd --ntask 10 -p $PROBLEM_NAME -c $CASE_NAME

Alternatively, MyCluster is a powerful tool for setting up, running and monitoring zCFD jobs on a range of
schedulers. We recommend this tool, and it is provided as part of the zCFD environment.

# PROBLEM_NAME is the name of the hdf5 file containing the mesh
# CASE_NAME is the name of the python control

cluster_run -p $PROBLEM_NAME -c $CASE_NAME -j mycluster_job.job

1.4.3 Input Validation

zCFD provides an input validation script which can be used to check the solver control dictionary before run-
time reducing the likelihood of a job spending a long time queuing only to fail at start up. The script can be
executed from the zCFD environment as follows:

validate_input input.py [-m mesh.h5]

Validating parameters dictionary...
Parameters dictionary is valid
Checking BC_, FR_, FZ_, IC_ and TR_ numbering...
IC_ numbering is correct
FR_ numbering is correct
BC_ numbering is correct
zCFD input file input.py is valid

If the -m option is given with a mesh file the script will check whether any zones specified as lists to boundary
conditions, transforms or reports in the input exist in the mesh.

1.5 MyCluster

MyCluster from Zenotech is used to set up, run, monitor and manage parallel jobs on a range of high perfor-
mance computing environments without the user having to know the details of the queueing systems and job
scheduler commands.

MyCluster is distributed as part of zCFD, and is automatically available from within the zCFD command line
environment. Alternatively, MyCluster can be downloaded and installed separately.

To use MyCluster within the zCFD command line environment, you first need to configure it with your user
details. This is so that MyCluster can keep track of your jobs, and email you with alerts. This step only needs
to be done once per user.

First enter your details:

(zCFD): mycluster --firstname <Your First Name>
(zCFD): mycluster --lastname <Your Last Name>
(zCFD): mycluster --email <Your Email Address>

MyCluster generates and uses job files for zCFD (and other software packages) for each different computer
system. To set up a job file for zCFD, enter (for example):

(zCFD): mycluster --create=my-job.job \
--jobname=my-job \
--project=my-project \
--jobqueue=my-job-queue \

(continues on next page)
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(continued from previous page)

--ntasks=12 \
--taskpernode=2 \
--script=mycluster-zcfd.bsh \
--maxtime=12

This will create a job file called my-job.job.

The my-job.job file can be called whatever you like, but avoid the use of spaces and other special characters
in the title. The project is a billing code used on the system. If you do not know what this code should be, ask
your system administrator.

The jobqueue is the name of the local job scheduler on the system (for example slurm, moab or pbs). To find
out which local job scheduler is running on your system, type:

(zCFD): mycluster -q

This will also provide a list of job queues, and show how much resource is currently available on each.

The ntasks setting is the total number of processors (sockets) that you want to use. For zCFD this will be equal
to the number of mesh partitions that are generated. The number of tasks per node should match the number
of compute devices per node (CPU sockets, Xeon Phi devices or Nvidia GPU devices). Usually there are two
sockets per node, so set taskpernode equal to 2. Your system administrator should advise if the local setup is
different to this.

The script is software specific. The mycluster-zcfd.bsh script is included (along with scripts for a number of
other CFD codes) in the MyCluster distribution in the share/ directory, so you do not need to alter the script
setting if you are running zCFD.

The maxtime setting is used to prevent failed jobs from over-running and to allow schedulers to prioritise short
jobs where they can be accommodated between larger jobs. The default setting is 12 hours (maxtime=12) but
you can specify any amount of time in hours (up to the local queue maximum) can be used. The actual limit
will be shown in the job file, and it is worth checking whether this is adequate.

Once created, the job file can be re-used for similar simulation tasks on the same computer. If any of the
parameters change (size of job, project, etc.) then you will need to create a new job file.

To run zCFD using MyCluster, make sure that the job file is in the directory containing the mesh and input
files, change to that directory and enter (for example):

Example usage:

(zCFD): (export PROBLEM=my-mesh.h5;\
export CASE=my-case;\
mycluster --submit=my-job.job)

where my-mesh.h5 is the name of the HDF5 mesh file and my-case.py is the name of the python input param-
eters file. This command will submit the job to the queue.

To track the progress of your jobs via MyCluster, enter:

(zCFD): mycluster -p

To delete a job from the queue, check the Job ID using mycluster -p and then enter:

(zCFD): mycluster -d <Job ID>

A full list of MyCluster commands can be obtained:

(zCFD): mycluster --help

4 Chapter 1. Version: v2021.07.123
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1.6 Control Dictionary

The zCFD control file is a python file that is executed at runtime. This provides a flexible way of specifying key
parameters, enabling user defined functions and leveraging the rich array of python libraries available.

A python dictionary called ‘parameters’ provides the main interface to controlling zCFD

parameters = {....}

zCFD will validate the parameters dictionary specified at run time against a set of expected values for each key.
In general, values that should be integers and floats will be coerced to the correct type. Values which should
be strings, booleans, lists or dictionaries will cause an error if they are the incorrect type. The time marching
scheme and solver/equation set chosen defines which dictionary keys are valid. A simple script is provided to
allow the user to check the validity of their input parameters before submitting their job. See Input Validation.

1.6.1 Reference Settings

Define units

# Optional (default 'SI'):
# units for dimensional quantities
'units' : 'SI',

Scale mesh

# Optional (default [1.0,1.0,1.0]):
# Scale vector
'scale' : [1.0,1.0,1.0],

# Optional
# Scale function
'scale' : scale_func,

Example scale function

# Scale function
def scale_func(point):

# Scale y coordinate by 100
point[2] = point[2] * 100.0
return {'coord' : point}

Reference state

# reference state
'reference' : 'IC_1',

See Initial Conditions

Partitioner

The ‘metis’ partitioner is used to split the computational mesh up so that the job can be run in parallel. Other
partitioners will be added in future code releases

1.6. Control Dictionary 5
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# Optional (default 'metis'):
# partitioner type
'partitioner' : 'metis',

Safe Mode

Safe mode turns on extra checks and provides diagnosis in the case of solver stability issues

# Optional (default False):
# Safe mode
'safe' : False,

1.6.2 Initialisation

Initial conditions are used to set the flow variable values in all cells at the start of a simulation. The initial
conditions default to the reference state (above) if not specified

# Initial conditions
'initial' : 'IC_2',

See Initial Conditions. A function which defines the initial fields may be supplied

# Initial conditions
'initial' : {

# Name of initial condition
'name' : 'IC_1',
# Optional: User defined function
'func' : my_initialisation,

},

Example User Defined Initialisation Function

def my_initialisation(**kwargs):

# Dimensional primitive variables
pressure = kwargs['pressure']
temperature = kwargs['temperature']
velocity = kwargs['velocity']
wall_distance = kwargs['wall_distance']
location = kwargs['location']

if location[0] > 10.0:
velocity[0] *= 2.0

# Return a dictionary with user defined quantity.
# Same schema as above
return { 'velocity' : velocity }

To restart from a previous solution

# Restart from previous solution
'restart' : True,
# Optional: Restart from and different case
'restart casename' : 'my_case',

6 Chapter 1. Version: v2021.07.123
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It is possible to restart the SA-neg solver from results generated using the Menter SST solver and vice versa,
however by default the turbulence field(s) are reset to zero. An approximate initial solution for the SA-neg
model can be generated from Menter-SST results by adding the key

# Generate approximate initial field for SA-neg
'approximate sa from sst results' : True,

1.6.3 Low Mach number preconditioner settings (Optional)

The preconditioner is a mathematical technique for improving the speed of the solver when the fluid flow is
slow compared to the speed of sound. Use of the preconditioner does not alter the final converged solution
produced by the solver. The preconditioner factor is used to improve the robustness of the solver in regions of
very low speed. The preconditioner is controlled in the 'equations' dictionary (see Equations) by setting the
'precondition' key, for example when using the euler solver

'euler' : {
# Optional (default False):
# Use low speed mach preconditioner
'precondition' : True,

},

# Optional, Advanced: Preconditioner factor
'preconditioner' : {

'minimum mach number' : 0.5,
},

1.6.4 Time Marcher

zCFD is capable of performing both steady-state and time accurate simulations. In the first case the solution
is marched in pseudo time using the dual time-stepping algorithm towards the steady-state solution. For time
accurate simulations the solution can be either globally time-stepped or use dual time-stepping. The 'time
marching' dictionary controls the selection of these schemes.

'time marching' : {....},

Time accurate (unsteady) simulation control

'time marching' : {
'unsteady' : {

# Total time in seconds
'total time' : 1.0,
# Time step in seconds
'time step' : 1.0,
# Required only when dual time-stepping:
# Dual time step time accuracy (options: 'first' or 'second'␣

,→order)
'order' : 'second',
# Required only when dual time-stepping:
# Number of pseudo time (steady) cycles to run before␣

,→starting dual timestep time accurate simulation
'start' : 3000,
},

},

Solver scheme

There are three different time marching schemes available in zCFD: Euler, various orders of Runge Kutta (like
Euler. . . ) and the implicit LU-SGS scheme. These can be run with dual time-stepping for both steady and

1.6. Control Dictionary 7
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unsteady simulations or with global time-stepping for unsteady simulations. The choice of scheme and time
stepping algorithm affects with dictionary keys are valid.

Runge Kutta

'time marching' : {
'scheme' : {

# Either 'euler' or 'runge kutta' or 'lu-sgs'
'name' : 'runge kutta',
# Number of RK stages 'euler' or 1, 4, 5, 'rk third order tvd'
'stage': 5,
# Time-stepping scheme: 'local timestepping' for steady state or␣

,→dual time step time accurate
# 'global timestepping' for time accurate
'kind' : 'local timestepping'
},

},

LU-SGS

'time marching' : {
'scheme' : {

'name' : 'lu-sgs',
},

'lu-sgs' : {
# Optional (default 8)
'Number Of SGS Cycles' : 8,
# Optional (default 1)
'Jacobian Update Frequency' : 1,
# Optional (default True)
'Include Backward Sweep' : True,
# Optional (default True)
'Include Relaxation' : True,
# Optional (default 1.0e-8)
'Jacobian Epsilon' : 1.0e-08,
# Optional (default True)
'Use Rusanov Flux For Jacobian' : True,
# Optional (default False)
'Finite Difference Jacobian' : True,

},

When global time-stepping is specified the keys ['unsteady']['order'] and ['unsteady']['start'] are
not valid. The CFL keys in in the CFL section below are also not valid as the time step is explicitly specified.
When the ['unsteady']['total time'] and ['unsteady']['time step'] keys are set to be equal val-
ues and ['time marching']['scheme']['kind'] is set to 'local timestepping' the solver marches in
pseudo time towards a steady state solution. If LU-SGS is selected then the 'lu-sgs' sub-dictionary must be
provided.

CFL

The Courant-Friedrichs-Lewy (CFL) number controls the local pseudo time-step that the solver uses to reach
a converged solution. The larger the CFL number, the faster the solver will run but the less stable it will be. The
default values should be appropriate for most cases, but for lower-quality meshes or very complex geometries
it may be necessary to use lower values (e.g. CFL of 1.0). In such cases it may also be helpful to turn off Multigrid
(above) by setting the maximum number of meshes to 0. The CFL dictionary keys are only valid when using
dual time-stepping.

8 Chapter 1. Version: v2021.07.123
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'time marching' : {
# Default max CFL number for all equations
'cfl': 2.5
# Optional (default 'cfl' value):
# Override max CFL number for transported quantities
'cfl transport' : 1.5,
# Optional (default 'cfl' value):
# Override max CFL number for coarse meshes
'cfl coarse' : 2.0,
# Control of CFL for polynomial multigrid (highest and lowest order)
'multipolycfl' : [2.0,2.0],
# Optional: Ramp cfl
'cfl ramp factor': {

# cfl = cfl_ini * growth ^ cycle
'growth': 1.05,
# min cfl
'initial': 0.1,
},

},

Cycles

For steady-state simulations, the number of pseudo time cycles is the same as the number of steps that the
solver should use to reach a converged solution. Note that the solver uses local pseudo time-stepping (the
time-step varies according to local conditions) so any intermediate solution is not necessarily time-accurate.

For unsteady (time-accurate) simulations using ‘dual time-stepping’ to advance the solution in time the num-
ber of pseudo time cycles determines the number of inner iterations that the solver uses to converge each real
time step. When global time-stepping is specified the cycles key is not valid.

'time marching' : {
# Required only for dual time-stepping:
# Number of pseudo time cycles
'cycles' : 5000,

},

Multigrid

The mesh is automatically coarsened by merging cells on successive layers in order to accelerate solver conver-
gence. This does not alter the accuracy of the solution on the finest (original) mesh. Advanced users can con-
trol the number of geometric multigrid levels and the ‘prolongation’ of quantities from coarse to fine meshes.

'time marching' : {
# Maximum number of meshes (including fine mesh)
'multigrid' : 10,
# Optional:
# Number of multigrid cycles before solving on fine mesh only
'multigrid cycles' : 5000,
# Optional (default 0.75), Advanced:
# Prolongation factor
'prolong factor' : 0.75,
# Optional (default 0.3), Advanced:
# Prolongation factor for transported quantities
'prolong transport factor' : 0.3,
},

1.6. Control Dictionary 9
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Polynomial Multigrid

The polynomial basis on which the solution is computed can be successively coarsened, thus allowing the
solution to be evolved quicker due to weakened stability restrictions at lower polynomial orders. This does not
alter the accuracy of the solution on the highest polynomial order.

'time marching' : {
# Optional (default False):
# Switch on polynomial multigrid
'multipoly' : True,
},

1.6.5 Equations

The equations key selects the equation set to be solved as well as the finite volume solver or the high order
strong form Discontinuous Galerkin/Flux Reconstruction solver. For each equation type the valid keys are
listed below.

# Governing equations to be used
# one of: RANS, euler, viscous, LES, DGRANS, DGviscous, DGLES, DGCAA
'equations' : 'RANS',

Compressible Euler flow is inviscid (no viscosity and hence no turbulence). The compressible Euler equations
are appropriate when modelling flows where momentum significantly dominates viscosity - for example at
very high speed. The computational mesh used for Euler flow does not need to resolve the flow detail in the
boundary layer and hence will generally have far fewer cells than the corresponding viscous mesh would have.

'euler' : {
# Spatial accuracy (options: first, second)
'order' : 'second',
# Optional (default 'vanalbada'):
# MUSCL limiter (options: vanalbada)
'limiter' : 'vanalbada',
# Optional (default False):
# Use low speed mach preconditioner
'precondition' : True,
# Optional (default False):
# Use linear gradients
'linear gradients' : False,
# Optional (default 'HLLC'):
# Scheme for inviscid flux: HLLC or Rusanov
'Inviscid Flux Scheme': 'HLLC',

},

The viscous (laminar) equations model flow that is viscous but not turbulent. The Reynolds number of a flow
regime determines whether or not the flow will be turbulent. The computational mesh for a viscous flow does
have to resolve the boundary layer, but the solver will run faster as fewer equations are being included.

'viscous' : {
# Spatial accuracy (options: first, second)
'order' : 'second',
# Optional (default 'vanalbada'):
# MUSCL limiter (options: vanalbada)
'limiter' : 'vanalbada',
# Optional (default False):
# Use low speed mach preconditioner
'precondition' : True,
# Optional (default False):
# Use linear gradients
'linear gradients' : False,

(continues on next page)
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(continued from previous page)

# Optional (default 'HLLC'):
# Scheme for inviscid flux: HLLC or Rusanov
'Inviscid Flux Scheme': 'HLLC',

},

The fully turbulent (Reynolds Averaged Navier-Stokes Equations)

'RANS' : {
# Spatial accuracy (options: first, second, euler_second)
'order' : 'second',
# Optional (default 'vanalbada'):
# MUSCL limiter (options: vanalbada)
'limiter' : 'vanalbada',
# Optional (default False):
# Use low speed mach preconditioner
'precondition' : True,
# Optional (default False):
# Use linear gradients
'linear gradients' : False,
# Optional (default False):
# Use least squares gradients
'leastsq gradients' : False,
# Optional (default 'HLLC'):
# Scheme for inviscid flux: HLLC or Rusanov
'Inviscid Flux Scheme': 'HLLC',
# Turbulence
'turbulence' : {

# turbulence model (options: 'sst', 'sa-neg', 'sst-transition')
'model' : 'sst',
# Optional (default 'none'):
# LES model (options 'none', 'DES', 'DDES', 'SAS')
'les' : 'none',
# Optional (default 0.09):
# betastar turbulence closure constant
'betastar' : 0.09,
# Optional (default True):
# turn off mu_t limiter
'limit mut' : False,
# Optional (default CDES=0.65, CDES_kw=0.78, CDES_keps=0.61):
# DES constants
'CDES': 0.65
'CDES_kw': 0.78,
'CDES_keps': 0.61,
# Optional when using 'sst' (default 0):
# Menter SST production term: 0=SST-V, 1=incompressible, 2=SST
'production': 0,
# Optional when using 'sa-neg' (default False):
# Use sa-neg rotation correction
'rotation correction': True,
# Optional when using sa-neg (default 0.0):
# Limit the sa-neg gradient based on the maximum value between␣

,→neighbouring cells.
# k = 0.0 corresponds to no limiting, k = 1.0 maximum limiting.
'limit gradient k': 0.5
# Option when using 'sst-transition'
# Transition model constants
'ca1': 2.0,
'ca2': 0.06,
'ce1': 1.0,
'ce2': 50.0,
'cthetat': 0.03,

(continues on next page)
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(continued from previous page)

'sigmagamma': 1.0,
'sigmathetat': 2.0,
# Option when using 'sst-transition'
# Turn transition separation correction model on/off
'separation correction': True

},
},

The filtered Large Eddy Simulation (LES) equations

'LES' : {
# Spatial accuracy (options: first, second)
'order' : 'second',
# Optional (default 'vanalbada'):
# MUSCL limiter (options: vanalbada)
'limiter' : 'vanalbada',
# Optional (default False):
# Use low speed mach preconditioner
'precondition' : True,
# Optional (default False):
# Use linear gradients
'linear gradients' : False,
'turbulence' : {

# LES model (options 'none', 'WALE')
'les' : 'none',

},

},

When using the high order strong form Discontinuous Galerkin/Flux Reconstruction solver the keys in the
equations dictionary are the same for each equation set except that the 'linear gradients' and 'limiter'
keys are not valid and additional keys are available in the equations dictionary. These additional keys are given
below

'DG...' : {
# Spatial polynomial order 0,1,2,3
'order' : 2,
# Optional (default 0.0)
'c11 stability parameter': 0.0,
# Optional (default 0.5)
'LDG upwind parameter': 0.5,
# Optional (default False)
'Shock Sensing': False,
'Shock Sensing k': 1.0,
'Shock Sensing Viscosity Scale': 1.0,
# Variable used for shock sensing, one of: 'density', 'temperature', 'mach',

,→'turbulence'
'Shock Sensing Variable': 'density',

},

Hence all the available keys for 'DGviscous' are a combination of the 'viscous' keys and the 'DG...' keys.
The same logic applies to the 'DGRANS', and 'DGLES' equation sets.

'DGviscous' : {
# Spatial polynomial order 0,1,2,3
'order' : 2,
# Optional (default False)
# Use low speed mach preconditioner
'precondition' : True,
# Optional (default 'HLLC')
# scheme for inviscid flux: HLLC or Rusanov

(continues on next page)
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(continued from previous page)

'Inviscid Flux Scheme': 'HLLC',
# Optional (default 0.0)
'c11 stability parameter': 0.0,
# Optional (default 0.5)
'LDG upwind parameter': 0.5,
# Optional (default False)
'Shock Sensing': False,
'Shock Sensing k': 1.0,
'Shock Sensing Viscosity Scale': 1.0,
# Variable used for shock sensing, one of: 'density', 'temperature', 'mach',

,→'turbulence'
'Shock Sensing Variable': 'density',
# Optional (default False)
'inviscid flow': False,
# Optional (default False)
'freeze diffusion during rk stages': False

},

1.6.6 DG Nodal locations

The location of the DG solution points must be specified in the parameters dictionary. The definitions first
need to be imported by including this import statement at the start of the control dictionary

from zcfd.solvers.utils.DGNodalLocations import *

To use the default values

'Nodal Locations' : nodal_locations_default['Nodal Locations']

Or select from the available types

'Nodal Locations' : {
# Options line_evenly_spaced, line_gauss_lobatto or line_gauss_legendre_

,→lobatto
'Line': line_gauss_legendre_lobatto,
# Options tet_evenly_spaced, tet_shunn_ham
'Tetrahedron': tet_evenly_spaced,
# Options tri_evenly_spaced, tri_shunn_ham
'Tri' : tri_evenly_spaced,

},

1.6.7 Material Specification

The user can specify any fluid material properties by following the (default) scheme for ‘air’:

'material' : 'air',

Options

'air' : {
'gamma' : 1.4,
'gas constant' : 287.0,
'Sutherlands const': 110.4,
'Prandtl No' : 0.72,
'Turbulent Prandtl No' : 0.9,

},
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1.6.8 Initial Conditions

The initial condition properties are defined using consecutively numbered blocks

'IC_1' : {....},
'IC_2' : {....},
'IC_3' : {....},

Each block can contain the following options

# Required: Static temperature in Kelvin
'temperature': 293.0,
# Required: Static pressure in Pascals
'pressure':101325.0,

# Fluid velocity
'V': {

# Velocity vector
'vector' : [1.0,0.0,0.0],
# Optional: specifies velocity magnitude
'Mach' : 0.20,

},

Dynamic (shear, absolute or molecular) viscosity should be defined at the static temperature previously spec-
ified. This can be specified either as a dimensional quantity or by a Reynolds number and reference length

# Dynamic viscosity in dimensional units
'viscosity' : 1.83e-5,

or

# Reynolds number
'Reynolds No' : 5.0e6,
# Reference length
'Reference Length' : 1.0,

Turbulence intensity is defined as the ratio of velocity fluctuations u
′

to the mean flow velocity. A turbulence
intensity of 1% is considered low and greater than 10% is considered high.

# Turbulence intensity %
'turbulence intensity': 0.01,
# Turbulence intensity for sustainment %
'ambient turbulence intensity': 0.01,

The eddy viscosity ratio (µt /µ) varies depending type of flow. For external flows this ratio varies from 0.1 to 1
(wind tunnel 1 to 10)

For internal flows there is greater dependence on Reynolds number as the largest eddies in the flow are limited
by the characteristic lengths of the geometry (e.g. The height of the channel or diameter of the pipe). Typical
values are:

Re 3000 5000 10,000 15,000 20,000 > 100,000
eddy 11.6 16.5 26.7 34.0 50.1 100

# Eddy viscosity ratio
'eddy viscosity ratio': 0.1,
# Eddy viscosity ratio for sustainment
'ambient eddy viscosity ratio': 0.1,

The user can also provide functions to specify a ‘wall-function’ - or the turbulence viscosity profile near a
boundary. For example an atmospheric boundary layer (ABL) could be specified like this:
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'profile' : {
'ABL' : {

'roughness length' : 0.0003,
'friction velocity' : 0.4,
'surface layer height' : -1.0,
'Monin-Obukhov length' : -1.0,
# Non dimensional TKE/friction velocity**2
'TKE' : 0.928,
# ground level (optional if not set wall distance is used)
'z0' : -0.75,

},
},

'profile' : {
'field' : 'inflow_field.vtp',
# Localise field using wall distance rather that z coordinate
'use wall distance' : True,

},

Note: The conditions in the VTK file are specified by node based arrays with names ‘Pressure’, ‘Temperature’,
‘Velocity’, ‘TI’ and ‘EddyViscosity’. Note the field will override the conditions specified previously therefore the
user can specify only the conditions that are different from default.

Certain conditions are specified relative to a reference set of conditions

'reference' : 'IC_1',
# total pressure/reference static pressure
# This can be a single value or VTK field file name with array name 'TotalPressureRatio' or␣

,→function
'total pressure ratio' : 1.0,
# total temperature/reference static temperature
# This can be a single value or VTK field file name with array name 'TotalTemperatureRatio' or␣

,→function
'total temperature ratio' : 1.0,
# Mach number
'mach' : 0.5,
# Direction vector or function
'vector' : [1.0,0.0,0.0],

'reference' : 'IC_1',
# static pressure/reference static pressure
# This can be a single value or VTK field file name with array name 'StaticPressureRatio' or␣

,→function
'static pressure ratio' : 1.0,

'reference' : 'IC_1',
# Mass flow ratio
'mass flow ratio' : 1.0,
# Or mass flow rate
'mass flow rate' : 10.0

# Example pressure ratio function
def total_pressure_ratio(x, y, z):

ratio = 1.0
if x < 10.0:

ratio = 0.9

return ratio
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Note: W ∗ = ṁ
ρV

1.6.9 Boundary Conditions

Boundary condition properties are defined using consecutively numbered blocks

'BC_1' : {....},
'BC_2' : {....},

zCFD will automatically detect zone types and numbers in a number of mesh formats, and assign appropriate
boundary conditions. The type tags follow the Fluent convention (wall = 3, etc), and if present no further
information is required. Alternatively, the mesh format may contain explicitly numbered zones (which can
be determined by inspecting the mesh). In this case, the user can specify the list of zone numbers for each
boundary condition ‘type’ and ‘kind’ (see below).

Wall

Wall boundaries in zCFD can be either slip walls, no-slip walls, or use automatic wall functions. No-slip walls
are appropriate when the mesh is able to fully resolve the boundary layer (i.e (y+ ≤ 1)) otherwise automatic
wall functions should be used. This behaviour is chosen by setting 'kind' in the wall specification below.
Optionally it is possible to set wall velocity, roughness and temperature.

'BC_1' : {
# Zone type tag
'ref' : 3,
# Optional: Specific zone boundary condition override
'zone' : [0,1,2,3],
# Required: Boundary condition type
'type' : 'wall',
# Type of wall, one of 'slip', 'noslip', 'wallfunction'
'kind' : 'slip',
# Optional: Roughness specification
'roughness' : {

# Type of roughness specification (option: height or length)
'type' : 'height',
# Constant roughness
'scalar' : 0.001,
# Roughness field specified as a VTK file
'field' : 'roughness.vtp',
},

# Optional: Wall velocity specification either 'linear' or 'rotating' dictionary␣
,→supplied

'V' : {
'linear' : {

# Velocity vector
'vector' : [1.0,0.0,0.0],
# Optional: specifies velocity magnitude
'Mach' : 0.20,
},

'rotating' : {
# Rotational velocity in rad/s
'omega' : 2.0,
# Rotation axis
'axis' : [1.0,0.0,0.0],
# Rotation origin
'origin' : [0.0,0.0,0.0],
},

(continues on next page)
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},
# Optional: Wall temperature specification either a constant 'scalar' value or a

,→'profile' from file
'temperature' : {

# Temperature in Kelvin
'scalar' : 280.0,
# Temperature field specified as a VTK file
'field' : 'temperate.vtp',
},

},

Note: The roughness at each boundary face is set by finding the nearest point to the face centre on the supplied
VTK file with the roughness value looked up in a node based scalar array called ‘Roughness’

Note: The temperature at each boundary face is set by finding the nearest point to the face centre on the
supplied VTK file with the temperature value looked up in a node based scalar array called ‘Temperature’

Farfield

The farfield boundary condition can automatically determine whether the flow is locally an inflow or an out-
flow by solving a Riemann equation. The conditions on the farfield boundary are set by referring to an 'IC_'
block. In addition to this an atmospheric boundary layer profile or a turbulence profile may be set.

'BC_2' : {
# Zone type tag
'ref' : 9,
# Optional: Specific zone boundary condition override
'zone' : [0,1,2,3],
# Required: Boundary condition type
'type' : 'farfield',
# Required: Kind of farfield options (riemann, pressure or supersonic)
'kind' : 'riemann',
# Required: Farfield conditions
'condition' : 'IC_1',
# Optional: Atmospheric Boundary Layer
'profile' : {

'ABL' : {
# Roughness length
'roughness length' : 0.05,
# Fiction velocity
'friction velocity' : 2.0,
# Surface Layer Heigh
'surface layer height' : 1000,
'Monin-Obukhov length' : 2.0,
# Turbulent kinetic energy
'TKE' : 1.0,
# Ground Level
'z0' : 0.0,
},

},
# Optional: Specify a turbulence profile
'turbulence' : {

'length scale' : 'filename.vtp',
'reynolds tensor' : 'filename.vtp',
},

},
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Inflow

zCFD can specify two kinds of inflow boundary condition: pressure or massflow, selected using the 'kind'
key. When using the pressure inflow the boundary condition is specified by a total pressure ratio and a total
temperature ratio that needs to be defined by the condition this refers to. When using the massflow condition
a total temperature ratio and mass flow ratio or a mass flow rate is required. Note the mass flow ratio is defined
relative to the condition set in the 'reference' key. By default the flow direction is normal to the boundary
but either a single vector or a python function can be used to specify the inflow normal vector of each face on
the surface.

'BC_3' : {
# Zone type tag
'ref' : 4,
# Optional: Specific zone boundary condition override
'zone' : [0,1,2,3],
# Required: Boundary condition type
'type' : 'inflow',
# Required: Kind of inflow, either 'default' for pressure or 'massflow'
'kind' : 'default',
# Required: Reference inflow conditions
'condition' : 'IC_2',
},

Example Pressure Inflow

An example setup for a pressure inflow is given below:

'IC_1' : {
'temperature' : 293.0,
'pressure' : 101325.0,
'V': {

'vector' : [1.0,0.0,0.0],
'Mach' : 0.20,
},

'Reynolds No' : 1.0e6,
'Reference Length' : 1.0,
'turbulence intensity' : 0.1,
'eddy viscosity ratio' : 1.0,
},

'IC_2' : {
'reference' : 'IC_1',
'total temperature ratio' : 1.0,
'total pressure ratio; : 1.0,
},

'BC_3' : {
'ref' : 4,
'zone' : [0,1,2,3],
'type' : 'inflow',
'kind' : 'default',
'condition' : 'IC_2',
},

Example Massflow Inflow

An example setup for a massflow inflow is given below:
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Outflow

Pressure or massflow outflow boundaries are specified in a similar manner to the Inflow boundary. They can be
of :code‘’kind’‘ 'pressure', 'radial pressure gradient' or 'massflow'. When either pressure bound-
ary is set the 'IC_' conditions it refers to must set a static temperature ratio, when 'massflow' is specified a
mass flow ratio or mass flow rate must be set. Note the mass flow ratio is defined relative to the condition set
in the 'reference' key.

'BC_4' : {
# Zone type tag
'ref' : 5,
# Optional: Specific zone boundary condition override
'zone' : [0,1,2,3],
# Boundary condition type
'type' : 'outflow',
# Kind of outflow 'pressure, 'massflow' or 'radial pressure gradient'
'kind' : 'pressure',
# Required only when using 'radial pressure gradient'
# Radius at which the static pressure ratio is defined
'reference radius' : 1.0,
# Outflow conditions
'condition' : 'IC_2',
},

Symmetry

'BC_5' : {
# Zone type tag
'ref' : 7,
# Optional: Specific zone boundary condition override
'zone' : [0,1,2,3],
# Required: Boundary condition type
'type' : 'symmetry',
},

Periodic

This boundary condition needs to be specified in pairs with opposing transformations. The transforms speci-
fied should map each zone onto each other.

'BC_6' : {
# Required: Specific zone index
'zone' : [1],
# Required: Type of boundary condition
'type' : 'periodic',
# Required: Either 'rotated' or 'linear' periodicity
'kind' : {

# Rotated periodic settings
'rotated' : {

'theta' : math.radians(120.0),
'axis' : [1.0,0.0,0.0],
'origin' : [-1.0,0.0,0.0],
},

# Linear periodic settings
'linear' : {

'vector' : [1.0,0.0,0.0],
},

},
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1.6.10 Fluid Structure Interaction

Fluid structure interaction (FSI) can be simulated in zCFD using a modal representation of the structure, which
must be pre calculated and provided at run time. The total displacement of the structure is calculated from
the contribution of each mode when excited by the force exerted by the fluid. This displacement is then prop-
agated through the mesh using the RBF or IDW transform capability detailed in Mesh Transformations . The
dictionary keys related to the different mesh deformation algorithms are the same as described in Mesh Trans-
formations . zCFD is capable of solving more than one modal model in a simulation. The modal model(s)
is(are) setup using the following keys in the Parameters dictionary with one MM_* key per modal model:

'modal model': {
'MM_1': {

# Required: File format of the structural modes. Currently only Nastran .op2 and .bdf␣
,→files are supported

'file format': 'nastran',
# Required: Name of the Nastran .op2 and .bdf files
'nastran casename': 'panel_nm_0.04m',
# Required: The wall zones in the mesh which correspond to the wetted surface of the␣

,→structural model
'zone': [1, 2, 3],
# Optional: Zones in the mesh which remain stationary
'fixed zones': [4, 5, 6],
# Required: Type of mesh transform to use: 'rbf multiscale', 'rbf' or 'idw'
'transform type': 'rbf multiscale',
# Support radius of the RBFs
'alpha': 0.02,
# Fraction of surface points in the RBF base set (for multiscale only)
'base point fraction': 1.0,
# Optional: Excite the structure with a sinusoidal point force
'forcing' : { 'frequency' : 1000.0, 'location' : [0.0, 0.0, 0.0], 'force' : [0, 0, 10.

,→0] },
# Optional: Apply a scaling to the structural model
'scale' : [1.0, 1.0, 1.0],
# Optional: The maximum search distance when mapping the structural model to the CFD␣

,→mesh
'mode mapping max distance' : 0.001,
# Optional: apply a scaling to the force applied at the wetted surface
'fluid force scaling' : 0.08 / 0.000166667,
# Optional: Select the modes to include in the analysis
'mode list' : [0,4,10,13]
# Optional: Specify the modal damping for each mode
'modal damping' : [0.0, 0.0, 0.0, 0.0],
# Optional: Recalculate the RBF coefficients when the maximum deformation reaches a␣

,→fraction of alpha
'recalculate rbfs alpha fraction': 0.1,
# Required (IDW only): number of nearest neighbours to
'n nearest' : 250,
# Required (IDW only): power of the interpolation weight in the far field, at the␣

,→boundary and the blending function between them
'power' : [3.0, 5.0, 8.0],
# Required (IDW only): distance over which to decay the deformation
'deformation distance': 100.0,
# Required (IDW only): Stiffness of the blending function used to decay the␣

,→deformation (0.0-1.0)
'blending stiffness': 0.5
# Optional: Update the modal model every n cycles
'update frequency' : 10,
# Optional: Use only the surface nodes that influence the deformation on each partition
'use local rbf nodes': False

},
}
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1.6.11 Fluid Zones

The fluidic zone properties are defined using consecutively numbered blocks like

'FZ_1' : {....},
'FZ_2' : {....},
'FZ_3' : {....},

For actuator disk zones

'FZ_1':{
'type':'disc',
'def':'T38-248.75.vtp',
'thrust coefficient':0.84,
'tip speed ratio':6.0,
'centre':[-159.34009325,-2161.73165187,70.0],
'up':[0.0,0.0,1.0],
'normal':[-1.0,0.0,0.0],
'inner radius':2.0,
'outer radius':40.0,
# Location of reference conditions used to calculate thrust from C
'reference point': [1.0,1.0,1.0],

},

For tree canopies in terrain wind models

'FZ_1':{
'type':'canopy',
# Use def when the vtp file specifies a closed volumetric region defining the canopy
'def':'canopy_dacosta.vtp',
# Use field when the vtp specifies a set of points on the surface (see below for␣

,→details)
'field':'canopy_field.vtp',
'func':lad_function,
'cd':0.25,
'beta_p':0.17,
'beta_d':3.37,
'Ceps_4':0.9,
'Ceps_5':0.9,

},

where the parameters cd, beta_p,beta_d, Ceps_4 and Ceps_5 are defined in the literature (for example
Desmond, 2014) and the leaf area density (LAD) is typically specified using a function

def lad_function(cell_centre_list):
lai = 5.0 # for example following Da Costa 2007
h_can = 20.0
lad_list = []
for cell in cell_centre_list:

wall_distance = cell[3]
lad = (np.interp(wall_distance, a_z[0] * h_can, a_z[1]) * lai / h_can,)
lad_list.append(lad)

return lad_list

and the variation in leaf area density is a function of height

a_z = (
np.asarray([0.0,0.43,0.1,0.45,0.2,0.56,0.3,0.74,0.4,1.10,

0.5,1.35,0.6,1.48,0.7,1.47,0.8,1.35,0.9,1.01,1.0,0.00]).reshape(11, 2).T
)

1.6. Control Dictionary 21



zCFDguide Documentation, Release v2021.07.123

Note: When using the field specification the height of the canopy at each boundary face is set by finding the
nearest point to the face centre on the supplied VTK file with the height value looked up in a node based scalar
array called ‘Height’

1.6.12 Mesh Transformations

Radial Basis Functions (RBFs) or Inverse Distance Weighted (IDW) interpolation can be used to deform the
volume mesh according to the motion of some or all of the boundary nodes. zCFD can perform an arbitrary
number of transforms which are specified in consecutively numbered blocks.

'TR_1' : {...},
'TR_2' : {...},

Two kinds of RBF transformation are available: the “Allen et al. greedy” method and the “multiscale” method.
For the “greedy” method

'TR_1' : {
# Required: 'rbf multiscale', 'rbf' or 'idw'
'type' : 'rbf',
# Required: list of surface zones to be deformed
'zone' : [4],
# Required: function describing surface deformation
'func' : transformFunc,
# Required: support radius of RBFs
'alpha' : 200.0,
# Optional: type of RBF - one of c0, c2, gaussian, tps (default: c2)
'basis' : 'c2',
# Required: maximum error tolerance for greedy
'tol' : 0.005,
},

For the “multiscale” method

'TR_1' : {
# Required: 'rbf multiscale', 'rbf' or 'idw'
'type' : 'rbf multiscale',
# Required: faction of surface points to be solved in the base set
'base point fraction' : 0.1,
# Required: list of surface zones to be deformed
'zone' : [4],
# Required: function describing surface deformation
'func' : transformFunc,
# Required: support radius of RBFs in the base set
'alpha' : 200.0,
# Optional: type of RBF - one of c0, c2, gaussian, tps (default: c2)
'basis' : 'c2', # type of RBF - one of c0, c2, gaussian, tps
},

For the IDW transform

'TR_1' : {
# Required: 'rbf multiscale', 'rbf' or 'idw'
'type' : 'idw',
# Required: number of nearest neighbours to
'n nearest' : 250,
# Required: list of surface zones to be deformed
'zone' : [4],
# Required: function describing surface deformation

(continues on next page)
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'func' : transformFunc,
# Required: power of the interpolation weight in the far field, at the boundary and␣

,→the blending function between them
'power' : [3.0, 5.0, 8.0],
# Required: distance over which to decay the deformation
'deformation distance': 100.0,
# Required: Stiffness of the blending function used to decay the deformation (0.0-1.0)
'blending stiffness': 0.5
},

An example of a function to deform a surface is given below

def transWing(x,y,z):
ymax = 1.0
ymin = 0.1
yNorm =(y-ymin)/(ymax-ymin)
x2 = x
y2 = y
z2 = z
if y > 0.1 and y < 1.1 and x < 1.1 and x > -0.1 and z > -0.1 and z < 0.1:

z2 = z - 0.5*(20.0*yNorm**3 + yNorm**2 + 10.0*yNorm)/31.0

return {'v1' : x2, 'v2' : y2, 'v3' : z2}

1.6.13 Reporting

In addition to standard flow field outputs (see below), zCFD can provide information at monitor points in the
flow domain, and integrated forces across all parallel partitions, any number of 'MR_', 'FR_' or 'MF_' blocks
may be spcified.

'report' : {
# Report frequency
'frequency' : 1,
# Extract specified variable at fixed locations
'monitor' : {

# Consecutively numbered blocks
'MR_1' : {

# Required: Output name
'name' : 'monitor_1',
# Required: Location
'point' : [1.0, 1.0, 1.0],
# Required: Variables to be extracted
'variables' : ['V','ti'],
},

},

# Report force coefficient in grid axis as well as using user defined transform
'forces' : {

# Consecutively numbered blocks
'FR_1' : {

# Required: Output name
'name' : 'force_1',
# Required: Zones to be included
'zone' : [1, 2, 3],
# Transformation function
'transform' : my_transform,
# Optional (default 1.0):
'reference area' : 0.112032,
# Optional (default 1.0):

(continues on next page)
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'reference length' : 1.0,
# Optional (default [0.0, 0.0, 0.0]):
'reference point' : [0.0, 0.0, 0.0],
# Optional (default 0.0): Calculate forces using a specified␣

,→reference pressure rather than absolute
'reference pressure': 0.0
},

},

# Report massflow ratio
'massflow' : {

# Consecutively numbered blocks
'MF_1' : {

# Required: Output name
'name' : 'massflow_1',
# Required: Zones to be included
'zone' : [1, 2 ,3],
},

},
},

Example Transformation Function

A transformation function my be supplied to the force report block to transform the force into a different
coordinate system, this a particularly useful for reporting lift and drag which are often rotated from the solver
coordinate system.

# Angle of attack
alpha = 10.0
# Transform into wind axis
def my_transform(x,y,z):

v = [x,y,z]
v = zutil.rotate_vector(v,alpha,0.0)
return {'v1' : v[0], 'v2' : v[1], 'v3' : v[2]}

1.6.14 Overset meshes

Within zCFD in finite volume mode it is possible to run with an arbitrary number of meshes overlapping one
another. It is also possible to run a single high order DG mesh (simulation) overlapping a single finite volume
background mesh. To activate the overset mesh capability, the user simply strings mesh and case names after
the -p and -c options respectively. There should be a python dictionary for each mesh with the appropriate
boundary conditions for that mesh defined in it. It should be noted that the ordering of the mesh and case
names indicates superiority where the second mesh overlaps the first, and the third overlaps the second and
first, and so on. Any mesh which overlaps another must have the boundaries defined where solution informa-
tion is to be from a lower mesh. This is specified as follows.

'BC_1': {
'zone': [5],
'type': 'overset'}

}

With finite volume mode, the overset solver can also perform simulations with rotating domains overlapping
fixed background domains. It is assumed the geometry of the rotating domains is such that there is no new
covering or uncovering of cells in the background mesh. Multiple rotating domains can also be defined. If
an overset mesh is to rotate, the entire mesh must rotate with no fixed volumes and dual time-stepping time
marching must be used. The rotating mesh / domain must be specified in fluid zone 1 as follows:
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'FZ_1': {
"type": "rotating",
"zone": [0],
"axis": [0, 0, -1],
"origin": [0, 0, 0],
"omega": 100,

},

1.6.15 Aero-acoustics

Broadband aero-acoustic simulations can be performed by selecting the DGCAA solver. Aero-acoustic sources
are currently limited to stochastic noise sources generated by the FRPM method. These sources are typically
driven by a steady state RANS simulation. Several FRPM domains can be defined within the aero-acoustic
simulation by adding additional 'FRPM_2', 'FRPM_3', etc., dictionaries. With a single FRPM domain, the
dictionary must be labelled 'FRPM_1'.

'DGCAA' : {
# Order of polynomial used to spatially represent
# the solution within an element
'order' : 2,

# If refraction effects are of interest, these can be included
# by mapping a CFD solution on to the acoustic domain. Defaults to True.
# (Optional)
'Map CFD to CAA mesh' : True,

# Option to run the FRPM solver only, without running the acoustic propagation
# solver. Defaults to False. (Optional)
'FRPM solver only' : False,

# Specify mesh file to be used when mapping RANS simulation to CAA mesh
# (and / or FRPM mesh)
'RANS mesh name' : "rans_mesh.h5",

# Specify solution file to be used when mapping RANS simulation to CAA mesh
# (and / or FRPM mesh)
'RANS case name' : "rans_case.py",

# Specify if FRPM sources are to be used in the acoustic simulation.
# Defaults to True. (Optional)
'frpm sources' : True,

# Specify after how many cycles microphone data should be extracted. Note this
# is cycles rather then Hz.
'microphone output frequency' : 10,

# FRPM dictionary. Specifies FRPM parameters. Full details below.
'FRPM' : {
# See dictionary contents below
}

}

'FRPM_1' : {
# The FRPM solver can run on a subset of MPI processes
# Choose number of MPI processes to run FRPM (Optional)
'number of frpm mpi processes' : 1,

# The FRPM can use freestream meanflow or flow from a RANS solution
# Set to True (default) if RANS solution to be used to drive FRPM (Optional)

(continues on next page)
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(continued from previous page)

'Map CFD to FRPM mesh' : True,

# Mesh spacing to be used for implicitly defined FRPM domain
# Ideally should be less than 0.5 the minimum turbulence integral
# length scale of interest
'FRPM Spacing' : 1.0,

# Constant of proportionality for turbulence integral length scale
# computation from RANS. Defaults to 1.0. (Optional)
'FRPM turbulence integral length scale parameter': 1.0,

# The user can inspect the RANS solution and choose a turbulence integral
# length scale best suited to match the RANS simulation. A uniform
# integral length scale allows much faster source computations. Defaults
# to True (recommended). Otherwise the turbulence integral length scale
# will be taken from the mapped RANS solution. (Optional)
'use constant integral length scale': True,

# Used in conjunction with 'use constant integral length scale' set to True
# User specified turbulence integral length scale.
'FRPM Turbulence Integral Length Scale' : 0.5,

# Number of cells in each direction for implicity defined FRPM mesh
# If using parallel FRPM, x-direction should be the largest value for
# optimum parallel efficiency
'FRPM Cart Num Mesh Cells' : [10, 10, 10],

# Frequency with which the FRPM sources should be updated. Acoustic sources
# at time levels between updates will be linearly interpolated. Set to -1 if
# solver should determine (recommended). Set to 1 if FRPM should be updated
# each acoustic solver time step
'FRPM March Frequency' : 1,

# Vector the implicitly defined FRPM mesh should be translated to correctly
# position sources in acoustic domain
'FRPM Domain Translate' : [0.0, 0.0, 0.0],

# Vector the implicitly defined FRPM mesh should be rotated to correctly
# position sources in acoustic domain
'FRPM Domain Rotate (Deg)' : [0.0, 0.0, 0.0],

# Physical distance sources should be blended over from the
# [min-X, max-X, min-Y, max-Y, min-Z, max-Z] cartesian boundaries
# Values of 0.0 indicate no blending of sources
'FRPM Blend Sources From Side' : [0.0, 0.0, 0.0, 0.0, 0.0, 0.0],

# The FRPM method can reconstruct turbulence fields from many turbulence
# spectrum models. Typically Gauss (default) is used. It is also possible to
# specify Liepmann. Liepmann is associated with greater computational cost.
# (Optional)
'FRPM turbulence spectrum': "gauss",

# Used in conjunction with the Liepmann spectrum. Defaults to 1 (Gauss
# spectrum). The Liepmann spectrum is obtained by a series of Gauss spectra,
# the number to be used is specified here (1 to 10). (Optional)
'FRPM number of discrete filters': 1,

# Used in conjunction with the Liepmann spectrum. Defines FRPM mesh refinement
# as a function of turbulence integral length scale from smaller scales. 0.5 is
# recommended if using Liepmann. (Optional)

(continues on next page)
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(continued from previous page)

'FRPM length scale resolution factor': 0.5,

# Used in conjunction with the Liepmann spectrum. Maximum turbulence integral
# length scale to be modelled (multiple of length scale from RANS).
# Defaults to 5.0. (Optional)
'FRPM maximum length scale factor': 1.0,

# Used in conjunction with the Liepmann spectrum. Minimum turbulence integral
# length scale to be modelled (multiple of length scale from RANS).
# Defaults to 0.1. (Optional)
'FRPM minimum length scale factor': 0.2,

# Run FRPM solver a number of cycles before starting the acoustic solver.
# Defaults to 0.
'FRPM Flush Particle Cycles' : 0,

# Smooth the turbulence kinetic energy field. If the RANS solution mapped
# on to the FRPM domain is discontinuous, that can cause problems with the
# computation of the acoustic sources. Ideally a finer RANS mesh should be used,
# however if this is not possible, Laplace smoothing can be used. There is
# potential for the accuracy of the results to deteriorate when using this.
# Defaults to 0. (Optional)

'FRPM Mapped TKE Smoothing iterations' : 5,

# Relaxation for turbulence kinetic energy smoothing. Defaults to 0.2.
# (Optional)
'FRPM Mapped TKE Smoothing relaxation' : 0.2,

# There are two options to map acoustic sources from the FRPM mesh to the
# acoustic mesh. Firstly linearly interpolate based on the location of
# the acoustic mesh solution points within the FRPM domain. Secondly use
# in inverse distance weighted mapping based on sources in the neighbourhood
# of the acoustic solver solution points. Defaults to True (Recommended).
# (Optional)
'FRPM inverse distance source mapping' : True,

# Used in conjunction with inverse distance weighted source mapping.
# Distance to specify neighbourhood to take sources from. Recommend
# at least twice the turbulence integral length scale. Note, this increases
# memory usage.
'frpm inverse distance source mapping distance' : 6.0,

}

1.6.16 Output

For solver efficiency, zCFD outputs the raw flow field data (plus any user-defined variables) to each parallel
partition without re-combining the output files. The 'write output' dictionary controls solver output.

'write output' : {
# Required: Output format: 'vtk', 'ensight', 'native'
'format' : 'vtk',
# Required: Variables to output on each boundary type
'surface variables': ['V','p'],
# Required: Field variables to be output
'volume variables' : ['V','p'],
# Optional: Volume interpolation - interpolates cell values to points in␣

,→supplied meshes
# File types can be vtp, vtu or binary stl
'volume interpolate' : ['mesh.vtp', 'mesh.vtu', 'mesh.stl'],

(continues on next page)
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# Optional: Paraview catalyst scripts
'scripts' : ['paraview_catalyst1.py','paraview_catalyst2.py'],
# Optional: If downstream processes need variables named using a specific␣

,→convention a naming alias dictionary can be supplied
'variable_name_alias' : { "V" : "VELOCITY", },
# Required: Output frequency
"frequency": {

# Output visualisation files every 3 cycles (default = 1000000)
"volume data": 3,
"surface data": 3,
"volume interpolate": 3,
"checkpoint": 3,
# Start output every 3 cycles after 1 cycle (default = 1)
"volume data start": 1
"surface data start": 1,
"volume interpolate start": 1,
"checkpoint start": 1,

},
# Optional for DG: Output high order surface data on zones
'high order surface list' : [1],
# Optional (default False):
# Don't output vtk volume data
'no volume vtk' : False

},

Output Variables

Variable Name Alias Definition
temperature T, t Temperature in (K )
temperaturegrad Temperature gradient vector
potentialtemperature Potential temperature in (K )
pressure p Pressure (Pa)
gauge_pressure Pressure relative to the reference value (Pa)
density rho Density (kg /m3)
velocity V, v Velocity vector (m/s)
velocitygradient Velocity gradient tensor
cp Pressure coefficient
totalcp Total presure coefficient
mach m Mach number
viscosity mu Dynamic viscosity (Pa/s)
kinematicviscosity nu Kinematic viscosity (m2/s)
vorticity Vorticity vector (1/s)
Qcriterion Q criterion
reynoldstress Reynolds stress tensor
helicity Helicity
enstrophy
ek
lesregion Different depending on turbulence model??
turbulenceintensity ti Turbulence intensity
turbulencekineticenergy Turbulence kinetic energy (J/kg )
turbulenceeddyfrequency Turbulence eddy frequency (1/s)
eddy Eddy viscosity (Pa/s)
cell_velocity
cellzone
cellorder

Continued on next page
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Table 1 – continued from previous page
Variable Name Alias Definition
centre Cell centre location
viscouslengthscale Defined?? Minium distance between cell and its neighbours
walldistance Wall distance (m)
sponge Sponge layer damping coefficient

Surface Only Quantities

Variable Name Alias Definition
pressureforce Pressure component of force on a face
pressuremoment Pressure component of moment on a face
pressuremomentx Component of pressure moment around x axis
pressuremomenty Component of pressure moment around y axis
pressuremomentz Component of pressure moment around z axis
frictionforce Skin friction component of force on a face
frictionmoment Skin friction component of moment on a face
frictionmomentx Component of skin friction moment around x axis
frictionmomenty Component of skin friction moment around y axis
frictionmomentz Component of skin friction moment around z axis
roughness Wall roughness height
yplus Non-dinemsional wall distance
zone Boundary zone number
cf Skin friction coefficient
facecentre Face centre location
frictionvelocity ut Friction velocity at the wall

1.7 Mesh Conversion

zCFD uses unstructured meshes written in an HDF5 file format. HDF5 provides a flexible, self describing
specification supporting parallel I/O that can be tuned per filesystem type (e.g NFS, GPFS, Lustre etc).

Meshes from a wide variety of sources can be easily converted into this format as follows:

1.7.1 OpenFOAM-x.x.x

We provide a range of converters for popular mesh types via a special version of the open-source CFD code
OpenFOAM, available freely for download here

Once downloaded and installed, the version of OpenFOAM will convert a range of file formats to the zCFD
format. Prior to running any of these, you will need to activate your OpenFOAM environment using

source $FOAM_INST_DIR/OpenFOAM-x.x.x/etc/bashrc

1.7.2 OpenFOAM Mesh Converter

To convert from an OpenFOAM format mesh to zCFD, run the following command in the MESH directory.

foamTozCFD

This will create a new folder called zInterface/ containing the HDF5 file.
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1.7.3 Fluent Mesh Converter

The converter for ANSYS Fluent files is a utility called fluent_convert. This is included in the path set by acti-
vating the zCFD command line environment.

To run the utility, use

(zCFD): fluent_convert <filename>.msh <new_filename>.h5

or

(zCFD): fluent_convert <filename>.cas <new_filename>.h5

The will produce 2 files: the zCFD HDF5 file and the name_zone.py python file which holds the fluid and
boundary zone names.

1.7.4 Star CCM+ Mesh Converter

There are a number of different file formats for CD-Adapco Star CCM+ meshes. The <filename>.sim file is in a
propietary format and at this stage cannot be converted. The <filename>.ccm can be converted using

(zCFD): ccmconvert <filename>.ccm <new_filenam>.h5

This produces the zCFD HDF5 file.

1.7.5 CGNS Mesh Converter

This utility will convert an unstructured, non-chimera, hexahedral mesh in CGNS (ref) format. The converter
will handle meshes with element types (HEXA_8):

(zCFD): cgnsconvert <filename>.cgns <new_filenam>.h5

This produces the zCFD HDF5 file. If you require support for additional element types please contact us:
mailto:zcfd@zenotech.com.

1.7.6 UGRID Mesh Converter

UGRID is a NASA format for meshes (ref). You must follow the naming convention (ref) for UGRID files, which
describes the format and endian-ness of the file data (“ascii8”, “b8”, “lb8”, or “r8”) depending upon which lan-
guage (C or FORTRAN) was used to create the file. The mapbc file is optional and if not provided the boundary
conditions of the zones default to wall.

(zCFD): ugridconvert <filename>.[ascii8, b8, lb8, r8].ugrid <new_filename>.h5 <filename>.mapbc

This produces the zCFD HDF5 file.

1.7.7 DLR Tau Mesh Converter

Tau is a CFD solver produced by the DLR (http://tau.dlr.de/startseite/). Note that Tau is a node-based solver
so flow field variables are calculated for and stored at the mesh nodes (or vertices) rather than at cell centres
(the approach used by Star CCM+, OpenFOAM, CFX and zCFD). Thus simply converting the file format will
not guarantee a good result. In many cases, the conversion will not result in a valid cell-centred zCFD mesh.

(zCFD): tauconvert <filename>.XXX <new_filename>.h5

This produces the zCFD HDF5 file.
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1.8 Visualisation

zCFD by default will output data in VTK (http://www.vtk.org/) format. This format can be read directly by
many post-processing tools including ParaView (http://www.paraview.org/) by Kitware.

Output in other formats is also possible, including TECPLOT (http://www.tecplot.com/) and EnSight (https:
//www.ceisoftware.com/) as follows:

1.8.1 EnSight Output

To output in EnSight format, use the following option in the ‘write output’ part of the control dictionary:

'write output' : {
# Output format
'format' : 'ensight',

1.8.2 Native HDF5 Output

To output in HDF5 format (the native format for zCFD), use the following option in the ‘write output’ part of
the control dictionary:

'write output' : {
# Output format
'format' : 'native',

1.8.3 VTK Output

By default, zCFD will output data in VTK format. To explicitly force VTK output, use the following option in the
‘write output’ part of the control dictionary:

'write output' : {
# Output format
'format' : 'vtk',

1.8.4 ParaView Catalyst Scripts

ParaView provides a powerful yet lightweight interface that allows parallel processing of simulation data during
programme execution called ParaView Catalyst (http://www.paraview.org/in-situ/). This is driven by scripts
(Python files) that can be called when data is output:

'write output' : {
# Output format MUST be VTK
'format' : 'vtk',
# The scripts should be in the same directory as the input files
'scripts' : ['paraview_catalyst1.py','paraview_catalyst2.py']

1.8.5 ParaView Client

To download the free ParaView software for visualising VTK format data on the local device, just visit the Par-
aView website (http://paraview.org).
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1.8.6 ParaView Client-Server

In addition to running entirely locally on a device, ParaView can interface to a remote server. This allows users
to run ParaView to access data that is held (and processed) on a different computer, potentially running larger
simulation tasks that would be possible on the local machine. This also means that there is no need to transfer
the large output files back to a local machine for post-processing. The remote machine can easily be set up to
run a ParaView Server in parallel - meaning that very large post-processing jobs can be run quickly.

ParaView Server Source

To download and install ParaView Server, you can either use the version on the main ParaView website and
follow the instructions here (http://www.paraview.org/Wiki/Setting_up_a_ParaView_Server), or else use the
Zenotech version (https://github.com/zenotech/ParaView.git). We currently recommend the Zenotech ver-
sion as it contains a number of fixes for parallel post-processing that have not yet been added to the main
release.

1.8.7 zPost: Post-Processing Suite

Zenotech has created an open-source post-processing code suite called zPost, which is available for free down-
load (https://github.com/zenotech/zPost.git). zPost makes use of ParaView and iPython (http://ipython.org/).
zPost is ideally suited to post-processing data generated by zCFD, and can exploit the full power of parallel,
remote processing. The repository for zPost contains numerous examples to help with the generation of stan-
dard CFD outputs.

Installing zPost

You must have Python 2.7 (https://www.python.org/download/releases/2.7/) installed, including the vir-
tualenv package. ParaView must also be installed. Once you have downloaded zPost, change to the
zPost/scripts directory and run:

> ./create_virtualenv.bsh

This will install all the required python packages in zPost/zpost-py27. If there are aditional package that you
want to include in the Python environment, just add them to the zPost/Requirements.txt file.

Running the iPython Notebook

One of the easiest ways to use Python is via an interactive notebook on your local computer. The notebook is
just a locally hosted server that you can access via a web-browser. This makes saving, re-running and viewing
the zPost output straightforward.

To automatically start up notebook server on your computer within the zPost environment, change to the
scripts directory and run:

> ./start_notebook

This should launch a web-browser automatically.

Note

This will use the default version of ParaView. If you want to run a custom version of ParaView please set the
PARAVIEW_HOME variable in your shell before starting the notebook server
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Examples

http://nbviewer.ipython.org/github/zenotech/zPost/tree/master/ipynb/

1.9 Utilities

zCFD is bundled with a number of utility functions to streamline specific workflows:

1.9.1 Windfarm Modelling

Overview

Windfarms consist of a set of specific turbine types at geographic locations. zCFD allows users to specify the
turbine characteristics and locations, and will automatically create turbine models within an existing mesh
and update the local flow conditions to match the thrust coefficient and tip speed ratio for each turbine.

The locations and TRBX turbine definition

zCFD provides a utility function create_trbx_zcfd_data that can be called from within the zCFD environment
and Python interactive shell. To start the zCFD command line environment, type:

> source /INSTALL_LOCATION/zCFD-version/bin/activate

The command prompt will now appear with a (zCFD) prefix. To run the create_trbx_zcfd_data utility, start the
interactive Python shell:

> (zCFD) > python

The utility takes several arguments, depending on the turbine model to be used. For simple and induction
models (where a reference velocity point is used to set the power, thrust and torque for the turbine) the func-
tion is used to look up data in a TRBX file format:

import zutil.farm as farm
farm.create_trbx_zcfd_input(case_name='windfarm_name',

wind_direction=267.0,
reference_wind_speed=10.0,
terrain_file=None,
report_frequency=100,
update_frequency=1,
reference_point_offset=1.0,
turbine_zone_length_factor=2.5,
model='simple',
turbine_files=[['xy_file_1.txt','turbine_type_1.trbx'],

['xy_file_2.txt','turbine_type_2.trbx']])

The utility will read each [<xy_file> , <trbx_file>] pair provided. The terrain file is any file format that can be
read by ParaView (STL, VTK) to use as the basis for the ground level at any given location. The default ‘None’
sets ground level to 0. The model uses a reference velocity at a point upstream of the turbine. The point is offset
upstream by a factor applied to the rotor diameter. The fluid zone associated with the turbine is a cylinder with
diameter equal to the rotor diameter and length given by the turbine zone length factor. The model is either
an induction model where the induction factor is automatically calculated from the thrust coefficient and 1D
momentum theory, or the simple model where the reference velocity is equal to the velocity at the rotor. The
<xy_file> is a 3-column data file in ASCII format with <turbine name>, <easting> and <northing> data such as:
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T001 251865.0 646486.0
T002 252240.0 646200.0
...
T015 253308.0 647985.0

The TRBX file is a data file with turbine information provided by manufacturers including a description of the
turbine geometry and aerodynamic performance characteristics.

The utility extracts key information from the TRBX file to automatically create a turbine definition
(<case_name>_zones.py) with an entry for each turbine in the array:

turb_zone = {
'FZ_1':{
'type':'disc',
'def':'./turbine_vtp/T001-267.0.vtp',
'thrust coefficient':0.821,
'thrust coefficient curve':[[0.0,0.0],[1.0,0.0],...,[51.0,0.0],],
'tip speed ratio':8.79645943005,
'tip speed ratio curve':[[0.0,0.0],[1.0,0.0],...,[51.0,0.0],],
'centre':[251865.0,646486.0,338.5],
'up':[0.0,0.0,1.0],
'normal':[-0.998629534755,-0.0523359562429,-0.0],
'inner radius':1.95500004292,
'outer radius':60.0,
'reference point':[251745.164456,646479.719685,338.5],
},
...

}

The ‘thrust coefficient’ may be defined as a single value, and if a data point curve is present in the TRBX file this
data is also supplied as the tuple array ‘thrust coefficient curve’, where the wind speed in metres per second
is the index. If this curve is provided, the utility will interpolate the curve at the reference speed to create the
single value otherwise a default value (10 m/s) is used.

The same approach is taken for the ‘tip speed ratio’ single value and curve - which is automatically calculated
from the rotor speed array (revolutions per minute) in the TRBX file.

The ‘reference point’ defines the location in the flow domain that is used as the reference value of wind velocity
for this turbine. This velocity is used in combination with the thrust coefficient and the tip speed ratio for zCFD
to calculate the momentum sources associated with the turbine. By default the reference point is automatically
located 1.0 turbine diameters upstream of the disc centre, assuming that the reference wind direction is also
the local wind direction. This is easy to modify.

The ‘centre’ is the centre of the disc, which is automatically determined from the nominal hub height in the
TRBX file as an offset to the ground height at the specified location. The local ground height is automatically
determined from a supplied VTK files, or from a previous solver run. Note that the VTK ground data can be
created with a single cycle of the solver, and does not need to include any turbines.

The vertical orientation is defined by the ‘up’ vector - normally this will be the unit vector in the z-direction.
The ‘normal’ defines the vector perpendicular to the disc. The inner and outer radii are based on the TRBX
definition of the size of the disc. No account is made of the hub or tower geometry.

For the blade element model the TRBX file is replaced with a dictionary that contains information about the
blades and aerofoil sections used on the rotor, plus information that can be specified to inform the controller
how to adjust the rotation rate and blade pitch each cycle:

farm.create_trbx_zcfd_input(
case_name='windfarm_name',
wind_direction=280.0,
reference_wind_speed=8.0,
terrain_file=None,
report_frequency=100,

(continues on next page)
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(continued from previous page)

update_frequency=1,
turbine_zone_length_factor=2.5,
model='blade element theory',
turbine_files=[['data/xy_file_1.txt', bet_dict_1],

['data/xy_file_2.txt', bet_dict_2]],
)

The xy_file is as above and the bet_dict is a Python dictionary with details of the rotor and blade, including
sectional aerodynamic characteristics and dimensions:

bet_dict = {
'name':'T001',
'status': 'on',
'number of blades': 3,
'rotation direction': 'clockwise',
'hub height': 70.0,
'inner radius': 4.0,
'outer radius': 40.0,
'rated power': 2000000.0,
'tip speed limit': 80.0,
'verbose': False,
'tilt': 6.0,
'yaw': 0.0,
'auto yaw': True,
'cut in speed': 4.0,
'cut out speed': 25.0,
'number of segments': 12,
'up': [0.0, 0.0, 1.0],
'aerofoil profile':

{'source': 'http://airfoiltools.com/airfoil/details?airfoil=n63415-il',
'upper surface': [[0.0, 0.0], [0.003, 0.01287], ..., [0.95028, 0.00931], [1.0, 0.0]],
'lower surface': [[0.0, 0.0], [0.007, -0.01087], ..., [0.94972, 0.00333], [1.0, 0.0]]}

,→,
'aerofoil cl': [[-90.0, -0.0],[-49.869, -0.202], ..., [49.907, 1.823], [90.0, 0.0]],
'aerofoil cd': [[-90.0, 2.0], [-70.099, 1.796], ..., [60.11, 1.645], [90.087, 1.996]],
'blade chord': [[0.0, 0.1], [0.1, 0.1], ..., [0.7, 0.034], [1.0, 0.018]],
'blade twist': [[0.0, 21.924], [0.1, 21.924], ..., [0.7, 2.461], [1.0, 0.023]],
'blade pitch range': [-10.0, 10.0],
'blade pitch': 1.0,
'blade pitch tol': 0.01,
'blade pitch step': 0.1,
'mean blade material density': 200.0,
'blade pitch tol': 0.01,
'dt': 0.2,
'inertia': True,
'damage ti': 0.15,
'damage speed': 10.0,
'friction loss': 0.01,
'thrust factor': 1.10,
'tip loss correction': 'acos-fit',
'rpm ramp':[[4.0,6.0],[13.0,16.0]],

}

The ‘name’ key is used to tag results associated with the turbine.

The ‘status’ key indicates whether the turbine should be active or not. This makes it straightforward to turn
a turbine off without regenerating the model. The ‘number of blades’ is typically 3 (which is also the default
value) but some turbines have 2 blades. The ‘rotation direction’ is typically clockwise (when viewed from the
front) for modern turbines, but the keyword values allow ‘clockwise’ or ‘anticlockwise’. This alters the rotation
of the wake.

The ‘hub height’, ‘inner radius’ and ‘outer radius’ define the vertical offset from the ground in metres, and the
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rotor dimensions respectively as above. The ‘rated power’ (Watts) of the turbine defines an operating limit of
power production that will not be exceeded.

The ‘tip speed limit’ is an environmental limit on the rate or rotor rotation, and is typically set to 80m/s. Note
that the tip speed is based on the absolute rotation rate of the rotor, and the actual tip speed relative to the air
may be increased by angular induction.

The model can produce various diagnostics. Setting ‘verbose’ to True will output these.

The rotor ‘tilt’ is an upward rotation of the entire rotor, to allow for tower clearance under blade deflection. The
value is typically a few degrees. The ‘yaw’ is a rotation angle in degrees from the prescribed wind direction, with
the option to specify ‘auto yaw’ which will automatically over-ride the ‘yaw’ value with a rotation into the local
(disc average) wind direction. A warning is issued if ‘auto yaw’ requests a ‘yaw’ value exceeding 10 degrees in
either direction.

The manufacturer typically specifies a ‘cut in speed’ and ‘cut out speed’ range for the local reference wind speed
(for blade elements this is the average windspeed on the rotor disc). The rotor is automatically stowed outside
these limits.

The ‘number of segments’ defines the resolution of the actuator disc discretisation (not the computational do-
main mesh) with a default value of 12.

The ‘aerofoil profile’ is used to integrate the blade unit sectional area between the ‘upper surface’ and ‘lower
surface’ over the range [0,1]. Once integrated, the value is stored in the turbine zone dictionary. The optional
‘source’ can be provided as a reference for the data. The sectional area multiplied by local radius is integrated
over the length of each blade and multiplied by the ‘mean blade material density’ (kilograms per cubic metre,
typically 200.0) to provide a value for the ‘rotor moment’.

The turbine controller assumes that the physical time between iterations is ‘dt’. This does not have to be equal
to the CFD timestep. If ‘inertia’ is True then the available torque is divided by the ‘rotor moment’ to determine
the rotor acceleration. Otherwise the rotor is accelerated with a 10% increase in rotational rate capped per
iteration. When the rotor is positively accelerated, half of the available torque is used to accelerate the rotor
and half is supplied to the generator (unless doing so would exceed the rated power). This is an arbitrary value
and it is expected that users will modify this behaviour when modelling more sophisticated control laws.

The aerodynamic characteristics of the aerofoil section are critical to the blade element theory model and are
not calculated automatically. These should be specified as points on the ‘aerofoil cl’ (local lift coefficient) and
‘aerofoil cd’ (local drag coefficient) curves over a range of angles of attack in degrees covering at least (-30,30).
Values beyond this range will be extrapolated as needed.

The ‘blade chord’ is the local chord length in metres used to scale the aerofoil along the normalised blade
length [0,1]. The ‘blade twist’ is the twist angle in degrees of the blade over the normalised blade length [0,1].

The turbine controller will automatically optimise the power production (up to the limit) by pitching the blades
over the range ‘blade pitch range’ in degrees using a Golden Section Search to a tolerance of ‘blade pitch tol’
degrees. All blades are pitched equally and the optimum pitch value accounts for the contribution of all blades
averaged over the disc. The ‘blade pitch’ can be set intially and a step size limit ‘blade pitch step’ can be set to the
range over which the blade pitch is optimised to within ‘blade pitch tol’ on each iteration. Typically the blades
are pitched to their maximum setting on startup and then the pitch value is reduced as the rotor accelerates. A
negative value of ‘blade pitch’ may be achieved at high rates of rotation as the local angle of attack of the blade
will still be positive. A warning is issued if the aerofoil angle of attack is less than zero anywhere on the rotor.

The turbine controller will determine whether (anywhere on the disc) the ‘damage ti’ (turbulence intensity)
and ‘damage speed’ are simultaneously exceeded. If so, a warning is issued and the rotor is stowed. It is in-
tended that this function may be modified by users to provide more sophisticated controller rules and wind
farm behaviour.

To account for frictional losses in the system, 1% (or other value of ‘friction loss’) is applied to the rate of rotor
rotation each iteration.

The ‘blade element theory’ fluid zones follow the ‘simple’ and ‘induction’ model example above, with inclusion
of the ‘blade element theory’ parameters.

A ‘thrust factor’ can be applied to the rotor to include an approximation for the effect of the tower and the hub
on the obstruction to airflow past the turbine.
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The blade element theory model assumed 2D flow over each aerofoil section, and a 3D correction can be
applied at the rotor tips. Options for the ‘tip loss correction’ keyword are ‘elliptic’ (which is not recommened for
most modern turbines), ‘acos-fit’, ‘acos shift-fit’ and ‘f-fit’. Definitions for these functions are provided in the
Reference Guide.

In addition to the tip speed limit inposed by environemntal considerations, some manufacturers also apply a
calibrated ramp factor to the revolutions per minute that the rotor can achieve for any given freestream hub-
height wind speed. This is to avoid overspeeds at low wind speeds. The ‘rpm ramp’ keyword takes a pair of
points [[cut in speed, lowest rpm],[full speed, rpm at full speed]] defining the ends of the linear limit curve
applied.

For all models, the turbine_vtk/<turbine>.vtp file defining the fluid zone for each turbine is also automatically
created.

The utility also automatically creates a set of monitor points for each turbine, all in a single file
(<case_name>_probes.py):

turb_probe = {
'report' : {

'frequency' : 100,
'monitor' : {

'MR_1' : {
'name' :'probe1@MHH@87',
'point' : [251865.0,646486.0,338.5],
'variables' : ['V', 'ti'],

},
...

}
}

}

The ‘frequency’ is the number of solver cycles between outputs, and the ‘monitor’ defines the name of the probe
using the WindFarmer standard notation.

Because the zone and probe files are automatically created, the following lines must be added to the end of the
standard zCFD parameter definition file <case_name>.py to insert the data:

z = zutil.get_zone_info('<case_name>_zones')
for key,value in z.turb_zone.items():
parameters[key]=value

p = zutil.get_zone_info('<case_name>_probes')
for key,value in p.turb_probe.items():
parameters[key]=value

When run, zCFD will include the probe data in the <case_name>_report.csv file. Note that this utility may take
a few seconds to run, especially if there are large numbers of turbines, or points on the mesh boundary.

Writing WindFarmer Data Files

In order to export the data from a zCFD run in a format that can be read by WindFarmer, we provide the utility
write_windfarmer_data, with usage:

import zutil.farm as farm
farm.write_windfarmer_data(case_name='windfarm_name',

num_processes=48,
up = [0,0,1])

The up vector is used to check that the orientation expected by WindFarmer is that same as the orientation
used in the simulation. In most cases this will be the z-axis.

The utility will output the probe information plus additional fields, calculated automatically.
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1.9.2 Propellor Modelling

Overview

Propellors are similar to wind turbines except that they are desgined to produce thrust rather than torque from
lift. zCFD includes a blade element fluid zone model based on an actuator disc, for propellors:

propellor_zones = {
'FZ_1': {

'name': 'R01',
'type': 'disc',
'model': 'blade element propellor',
'number of blades': 2,
'status': 'on',
'outer radius': 0.175,
'inner radius': 0.039025,
'def': './propellor_vtp/R01.vtp'
'rotation direction': 'clockwise',
'verbose': True,
'update frequency': 1,
'centre': [0.0, 0.0, 0.0],
'reference plane': True,
'normal': [0.0, 0.0, 1.0],
'up': [1.0, 0.0, 0.0],
'blade chord': [[0.2333, 0.1468], [0.2667, 0.1681], ... , [1.0, 0.0581]],
'blade twist': [[0.2333, 28.6202], [0.2667, 25.5228], ... , [1.0, 0.0]],
'aerofoil cd': [[-60.0, 1.4552], [-50.0, 1.0992], ... , [60.0, 2.3542]],
'aerofoil cl': [[-60.0, -0.7978], [-50.0, -0.8195], ... , [60.0, 1.3818]],
'number of segments': 24,
'tip loss correction': 'elliptic',
'tip loss correction radius': 0.8,
}

}

The ‘name’ key is used to tag results associated with the propellor.

The ‘type’ defines the fluid zone type for propellors.

The ‘model’ should be set to ‘blade element propellor’.

The ‘number of blades’ can be any positive integer - typically 2, 3 or 4.

The ‘status’ can be set to on or off, as a quick way to disable a propellor without re-generating the model.

The ‘inner radius’ and ‘outer radius’ refer to the rotor disc.

The ‘def ’ is a path to a file containing the VTP file defining the disc fluid zone geometry. This can easily be
created interactively in ParaView or else using the ParaView Simple library in Python:

line = Line()
line.Resolution = 10
line.Point1 = (0.0, 0.0, -0.5 * 0.175)
line.Point2 = (0.0, 0.0, 0.5 * 0.175)
tube = Tube(Input=line)
tube.NumberofSides = 128
tube.Radius = 0.175
transform = Transform(Input=tube)
transform.Transform = "Transform"
transform.Transform.Rotate = [0.0, 0.0, 0.0]
transform.Transform.Translate = [0.0, 0.0, 0.0]
writer = CreateWriter('./propellor_vtp/R01.vtp')
writer.Input = transform
writer.UpdatePipeline()
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where the above code block would produce a fluid zone for a propellor with normal [0.0,0.0,1.0]. Note that gen-
eral use of the ParaView rotate command should follow the (default) ZXY convention, for which the following
is a reasonable estimate:

def rotation_matrix(axis, theta):
# Rotation matrix for counterclockwise rotation about axis by theta (radians)
axis = np.asarray(axis)
axis = axis / math.sqrt(np.dot(axis, axis))
a = math.cos(theta / 2.0)
b, c, d = -axis * math.sin(theta / 2.0)
aa, bb, cc, dd = a * a, b * b, c * c, d * d
bc, ad, ac, ab, bd, cd = b * c, a * d, a * c, a * b, b * d, c * d
return np.array([[aa + bb - cc - dd, 2 * (bc + ad), 2 * (bd - ac)],

[2 * (bc - ad), aa + cc - bb - dd, 2 * (cd + ab)],
[2 * (bd + ac), 2 * (cd - ab), aa + dd - bb - cc]])

def trans_rot(v, vec, ang):
v2 = np.dot(rotation_matrix(vec, ang), v)
return [v2[0], v2[1], v2[2]]

# ParaView rotation emulator - note that ParaView (i.e. VTK) uses the order ZXY for rotation.
def pv_rotate(pt,args):

pt1 = trans_rot(pt,[0.0,0.0,1.0],math.radians(args[2]))
x1 = trans_rot([1.0,0.0,0.0],[0.0,0.0,1.0],math.radians(args[2]))
y1 = trans_rot([0.0,1.0,0.0],[0.0,0.0,1.0],math.radians(args[2]))
pt2 = trans_rot(pt1,x1,math.radians(args[0]))
y2 = trans_rot(y1,x1,math.radians(args[0]))
pt3 = trans_rot(pt2,y2,math.radians(args[1]))
return pt3

The ‘rotation direction’ can be clockwise or anticlockwise. zCFD will apply the necessary orientations to the
forces and wake rotation.

The ‘verbose’ keyword (True or False) specifies the level of output from the model.

The ‘update frequency’ for propellors should be 1 - meaning that the model is evaluated on every solver cycle.

The ‘centre’ is the centre of the disc rotor in 3D, and the ‘normal’ defines the orientation.

The ‘up’ vector is used to define $theta_0$ on the rotor: the radial vector from the centre to the rotor tip at
$theta_0$ is defined by the cross product of the up vector and disc normal. All forces on the disc are evaluated
by incrementing $theta$ over the range $[0,2pi]$.

The ‘blade chord’ and ‘blade twist’ are each defined as a list of points over the domain [0,1]. Note that the twist
is measured in degrees and the chord is scaled by the outer radius in zCFD, so the input has to be scaled for a
radius of 1.

The ‘aerofoil cl’ and ‘aerofoil cd’ curves are lists of points defining the aerofoil characteristics. zCFD interpolates
values between these points and will extrapolate if necessary.

The ‘number of segments’ used in the model should be chosen to match the mesh spacing in the CFD mesh
around the propellor. zCFD does not generate a new mesh in order to apply the propellor model.

A ‘tip loss correction’ can be applied to the blade element model, and the only option is ‘elliptic’. The ‘tip loss
correction radius’ is the radius from which the tip correction is applied and has a default value of 0.8.
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